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Presenter Notes
Presentation Notes
What is a system and how is it represented using the Lifecycle Modeling Language (LML)? This presentation will use an example of a high-hazard facility to discuss the concept of a system, and how such a system would be represented using LML object types, attributes and relationships. A broad range of system viewpoints will be shown to illustrate how a system is defined, including System Context (Operating Environments, Interfacing Systems), System States and Modes (From conops and context), System Requirements (from source to allocation), System Characteristics, and System Architecture. This presentation will provide a broad application of LML useful as a general starting point for many other applications.
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Presentation Objective

If we are to successfully achieve the vision for digital systems engineering, then there is a need to
understand how a system is expressed in data.

Using current systems engineering definitions and views:

understand the information defining a system

examine commonly used views in systems engineering practice

show how the views are represented as data using the Lifecycle Modeling Language (LML)
Define a system’s data representation as a compilation of LML data classes


Presenter Notes
Presentation Notes
I would like to share a perspective about what it takes to be successful in implementing digital systems engineering.
We need a means of expressing systems as data that can be shared across tools and platforms. An ontological approach that enables data to cross boundaries in a digital environment, including engineering, procurement, fabrication, construction and test environments.

During this presentation I plan to share how we can express systems in a data view. I will start with basic system definitions and common views used in their development, and reveal how these are expressed in LML. This understanding will provide a foundation by which a project can succeed in digital engineering implementation. I believe the data view is essential to building the digital thread.


LML Matrix

This matrix is a starting point for the
classes and their relationships used in
this presentation

Choices for relationships will depend
on:

* uses case

* reporting needs

Classes Action

Artifact

Asset
(Resource)

Characteristic
(Measure)

Connection
(Conduit,
Logical)

Cost

Decision

Input/Output

Location
(Orbital,
Physical,
Virtual)

Risk

Statement
(Requirement)

Time

a decomposed by* peormed by enables generates causes Gl
Action related to* references e specified by results in roceives located at mitigates traced from occurs
p{se' . resolves (verifies)
12
causes referenced by
Artifact referenced b decomposed by* referenced b referenced by defines protocol for incurs ref;Tn::I:; b referenced b located at mitigates Lflfiriieji occurs
- g related to* 4 specified by referenced by referenced by . i i referenced by
results in traced from
resolves (verifies)
consumed b enables
( » V) decomposed by* causes (satisfies)
Asset performs . N . made "
(produced by) references orbited by specified by connected by responds to located at mitigates traced from occurs
{Resource) . related to* ) resolves (verifies)
(seized by) results in
causes (satisfies)
ey decomposed by* nabl
Characteristic . references . P . b . incurs enab e? . located at mitigates spacifies occurs
specifies specifies specifies related to specifies specifies results in specifies specifies resolves traced from specifies
(Measure) P specified by* P specifies P ) . P
specifies (verifies)
Connection decomposed by* causes (satisfies)
- defined protocol by enables
(Condmt, references connects to specified by joined by* results in transfers located at mitigates traced from occurs
u |
Logical) related to* resolves (verifies)
® ® causes incurred by
incurred by incurred by t incurred by (satisfies)
incurred b incurred b located at occurs
Cost g references i specified by R e I a I O n S h I S mitigates traced from
resolves (verifies)
causes
enabled b alternative
enabled by ¥ enabled by enabled by enabled by W date resolved by
. . enabled by made by enabled by ) decomposed by* enabled by . enabled by L
Decision references result of incurs located at mitigated by decision due
result of responded by . result of related to* result of traced from
result of specified by result of result of occurs
result of result of
resolves
causes (satisfies)
enerated b enables decomposed by*
Input/ Output greceive d b\: references specified by transferred by results in relafe d to* Y located at mitigates traced from occurs
resolves (verifies)
Location e
(Orbital, locates decomposed by* locates (satisfies)
locates locates locates . locates locates locates locates " occurs
Physical, specified by related to* mitigates traced from
a erifies)
Logical) (v
caused by
db (= b caused by*
caused by c‘avuse Y caused by ,a,USEd by caused by ca,USEd ¥ enables caused by v u caused by
) L mitigated by " mitigated by " incurs " - located at decomposed by* - occurs
Risk mitigated by rof mitigated by mitigated by . mitigated by mitigated by . . mitigated by "
erences resolved by mitigated by . mitigated by related to mitigated by
resolved by resolved by . resolved by results in resolved by . resolved by
resolved by specified by resolved by resolved by resolved by
references
. . L (satisified by) o incurs alternative of L. located at
Statement (satisfied by) (satisified by) (satisified by) specified by (satisified by) (satisified by) enables (satisified by) (satisfied by) t?a_uses e (_tn?curs
. traced to sourced by traced to - traced to - S traced to R mitigates traced to* (satisified by)
(Requirement) i (.rified by) traced to (verified by) ) (verified by) ” _ (verified by) : resolves (verified by)
(verified by) (verified by) (verified by) results in (verified by) related to*
occurred b date resolves occurred b occurred by decomposed by*
Time occurred by occurred by occurred by 4 occurred by occurred by decided by occurred by occurred by ¥ (satisfies) P Y

specified by

occurred by

mitigates

(verifies)

related to*



Presenter Notes
Presentation Notes
Since I am using LML as the basis for my data model, I wanted to point to this matrix provided in the specification. I put it here in case you are not familiar with it. 


System Defined

 Asystem is an arrangement of parts or elements » Physical Architecture
that together exhibit behavior lor meaning that
the individual constituent\ido not. (ISO 15288)

Functional Architecture

INCOSE Systems Engineering Handbook, Version 5


Presenter Notes
Presentation Notes
Let’s start with the definition of a system as communicated in ISO 15288 and the INCOSE Handbook
Notice the parts of the definitions highlighted in red text and how they relate to the two types of system architectures most often described by systems engineers.
Physical architecture is an arrangement of the parts or elements from which a system is composed
Functional architecture describes the actions and behaviors that a system possesses


Engineered System Defined

 Asystem is an arrangement of parts or elements » Physical Architecture
that together exhibit behavior lor meaning that
the individual constituent\i’do not. (ISO 15288)

Functional Architecture Characterized Environments

* An engineered system is system desi;g or adapted to
interact with an anticipated operational environment to
achieve one or more intended purposes /while complying

with applicable constraints. (INCOSEﬁ‘H)

Requirements & Characteristics / Statements of Need or Objectives

INCOSE Systems Engineering Handbook, Version 5


Presenter Notes
Presentation Notes
Extending the system definition to address engineered systems, the INOCSE Handbook provides this additional information. 
Notice the addition of operational environment as part off the system context. These environments define the characteristics of the operational environment.
Further, engineered systems have a purpose that needs to be expressed.
Finally, systems need to comply with constraints that are expressed. Systems engineers use requirements and characteristics to express them.
As a note, requirements are generally text-based statement specifying what a system shall do, or how well it will perform, or other conceptual constraints.
Characteristics, while they might be expressible as a requirement, express physical features about the system and are typically at a detailed design level. They are quantities that we often express in tables.


System Defined

v

e Asystem is an arrangement of parts or elements
that together exhibit behavior lor meaning that
the individual constituentido not. (ISO 15288)

Physical Architecture

Functional Architecture Site Characterized Environments

* An effEin&ered system is system desig'nxq or adapted to
igfleract wityan anticipated operational environment to

achieve one ojymore intended purposes while complying
with applicable §gnstraints. (INCOSE{H)

Statements of Need or Objectives

Requirements & Characteristics

In a digital environment, how do we represent systems as data? > N Lifecycle
> Modeling
& /) Organization


Presenter Notes
Presentation Notes
Putting these definitions together, we can see that a system, by definition, is expressed in terms of:
physical architecture
functional architecture
characterized environment
requirements
characteristics
statements of need or objects

In this presentation, I will use an industrial process facility as an example. This I will start by using the term “Site”, which I will explain as we jump into a discussion of physical architecture.



PHYSICAL ARCHITECTURE


Presenter Notes
Presentation Notes
Let’s talk about physical architecture in the context of systems engineering, and how this would be expressed as data.


Facility Taxonomy

Infrastructure

- Storm Water - Srnc;_ss System
- Fire Water - Hanaling
System - Conveyance - Utility
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- Well Houser Subsystem
Structure - Maintenance Facilities
- Office Buildings
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Final Site - Retaining Walls
3 - Road
Grading ) Slopess Sub-Component ]
Bulk Material |
Legend:
Site/Infrastructure/Plant Structure
i - Foundations
Baseiine - Concrete Walls & S&2ams
Floors - Columns [Structural SuhSystem]
System/Structure - e - Bracing .
Baseline - Racks

Cnmpgnent - Platforms - Handrails

3

I - Minor Supports
Bulk Material

[ Product Baseline

|

ASME Plant System Design standard, PSD-1, draft


Presenter Notes
Presentation Notes
First let’s start with the taxonomy of an industrial process facility.
This picture was developed for use in a new ASME standard addressing Plant System Design
It provides a taxonomy for how such a facility is defined from the top-down, starting with the site
It provides the scope of a typical project that develops such a faciliity
Plant is composed of systems and structures
Infrastructure, sometime called the “balance of plant” is composed of supporting systems, structures and graded features.
This diagram also identifies the aspects of Facility of Interest that are parts of specific development baselines.




Context Diagram
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Presenter Notes
Presentation Notes
A common physical architecture diagram, known as a context diagram, is often the first expression of a Site. It puts it in context of the operational environment such as external interfacing facilities and other aspects of the operating environment, such as weather, natural hazards, security threats, etc. 
In this example, a nuclear waste processing site takes inputs from several external utilities, and a nuclear waste storage system to generate two types of outputs generated to different specifications. In this case, the output is nuclear waste entrained in a glass designed to hold the waste in a form that prevents environmental contamination. 
When expressed as data, this diagram uses the LML  ASSET and CONDUIT classes.
CONDUITS express the physical aspect of the interface. We will talk about the INPUT/OUTPUT items flowing across the CONDUITS later.
External ASSETS are given an “External” label so they do not become part of the hierarchical view as if they were part of the site


Site Architecture
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Waste Processing Facility to
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DECOMPOSED DECOMPOSED
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/
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Facility

&
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Presenter Notes
Presentation Notes
Decomposing the site extends the physical architecture a layer down. (Note: That this diagram uses the term “Facility” rather than “Plant” due to project lingo).
Notice that the data model is the same
The CONDUITS are internal to the site in this diagram and are different than the conduits going external to the site


Architecture Hierarchy

Electrical
» Distribution

System

WPS.9.1

> Substation

L

WP5.9.2
Medium Voltage

Subsystem

LS

WPS.9.3
Low Voltage

WPS )
Waste Processing
Site
2 2 : | : 4
WP5.10 ] WPS.11 ) WPS.12 1
Waste Processing Vitritication .
Facility Facility Site Infrastructure
WPS.1 WPS.6 ] WP5.9
Waste Receipt Vitrification
> System System
WPS.2 WPS.7 ]
Waste Storage Vitritied Waste
System Storage System
WPS.3 WPS.8 ]
Waste Filtration Waste Loading
System System
WPs.4
lon Removal
System
WPS.5
Glass Mixing

> System

Distribution

-

-

ASSET

Site

(&

_

/

decomposed by

/ASS ET

Facility

(&

~

/

decomposed by

ASSET

System

&

~

),



Presenter Notes
Presentation Notes
Another popular physical architecture view is a hierarchy. It show parent-child relationships. 
Notice that the diagram and data model use only ASSET class entities connected using decomposition relationship types
CONDUIT entities are not shown on this type of diagram, although those relationships still exist
The next view combines the Asset diagram and the hierarchy views


Multi-Layered Site Architecture
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Presenter Notes
Presentation Notes
Notice the structure of this diagram showing the site (lighter blue box) containing the facilities (darker blue boxes), which contain their systems (whiter boxes). This reveals the hierarchy.
Also see the CONDUITS are exposed
Note: This diagram was auto-generated from data using the information captured in the database. It used the data model on the right and bottom of the slide as the basis to create the diagram.


Interface Diagram
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Presenter Notes
Presentation Notes
Focus again on the interface
Conduit showing the physical
INPUT/OUTPUT added to show what is exchanged
The red relationship types shown in the data model are extensions to the current LML spec


FUNCTIONAL ARCHITECTURE



State Diagram
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Data View for State Diagram

'WPS

Waste Processing Site

-

CH.STO |
specified by
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Note: Transitions are not shown for the sake of diagram simplicity



Functional Behavior

INPUT/OUTPUT /ACTION ) AINPUT/OUTPUT
Waste received by . Perform generates Rk LAW
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Decomposed Function
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Linking Decisions
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Linking Functions to Assets
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CHARACTERISTICS



Specifying Input/Output Characteristics

A -\
(ﬂVPUT/OUTPU? (ACTION ) (INPUT/OUTPUD A CH.839039 w INPUT/OUTPUT
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\\ . \_Operations / \_ . y | ] \_ )
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Canisters Ready for Fﬂad{lr?qactlmtyéevel Density (measured)
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J TRU Content Maximum
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REQUIREMENTS



[2) Documents
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Imported Document as Data
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Allocation and Specification
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Characteristics Flowdown

Calculation

CH

Stream Properties

specifies

—

Heat Exchanger

HX Datasheet
Artifact

defines

—a

’

—__--_-><

Case 4 - G-F - Maximum actual volumetric flow rate for shellside (NOTE 2) |Er1|::|l.1ir'§,ur PO No.
Jltem No. HA-331101/HA-331201
Service of Unit Gas/Gas Exchanger No. ﬁequired 2 {NDﬁ 1)
Size Type BEM (NOTE 7) Connected Parallel 2 Series 2
Surf./Unit (Gross) m? Shells/ Unit 4 (NOTE 8) Surface/Shell (Gross) m?
PERFORMANCE OF ONE UNIT - CASE 4 [G-F]
Fluid Allocation | Tube Side Shell Side
| Inlet | Outlet Inlet | Outlet
Fluid Name HC VAP FROM TEG OUTLET SCRUB| HC VAP FROM COLD SEP
Fluid Quantity, Total kg/h 444668.1 x1.1 (NOTE 4) 444434.4 x1.1 (NOTE 4)
Vapour 444668.0 4445214 444426.7 444434 .4
Liquid 0.1 146.7 7.7 -
Steam - - -
Water
Noncondensable - - - -
Temperature (In / Out) °C 19.8 1.3 -4.0 14.4
Density kg / m? 33.55 35.94 27.33 24.22
Viscosity cP 0.0121 0.0116 0.0111 0.0116
Molecular Weight, Vapour kg/kgmol 16.35 16.34 16.34 16.34
Molecular Weight, Liquid ka/kgmol 137.16 113.60 113.78 -
Molecular Weight, Water kg/kgmol - - - -
Specific Heat kJ/kg K 2.552 2.594 2.483 2.446
Thermal Conductivity WimK 0.0369 0.0345 0.0326 0.0349
Latent Heat kJ/kg
Inlet Pressure bar(g) A4 4 32.8
Velocity (NOTE 11) AN m/s
Pressure Drop, Allow./ Calc. bar 1.00 1.00
Fouling Resistance (NOTE 5) m? K/W 0.00020 0.00020
Heat Exchanged 5750 X1.1 (NOTES 4, 5) 2N KW MTD "C
Transfer Rate, Service Dirty Clean Wim? K
CONSTRUCTION OF ONE SHELL Sketch (Bundle/Nozzle Orientation)
Shell Side Tube Side
Design/Test Pressure bar{g) F\V/a0 Fv/ia0
Design Temperature °C -45.6/80 4N\ -A56/80 AN
MNo. Passes per Shell
MOC + Corrosion Allowance mm
Connections In
Size & Out
Ratings Inter.




Differences in Asset Characteristics

specified by R

(CHARACTERISTIC)
Design

ASSET )
Heat -
Exchanger
\ ,/

Temperature

(& ,/

(CHARACTERISTIC)
Weight

(Measured)
N /

(CHARACTERISTIC)
Weight

(Estimated)
\ ,/

Attribute: Required

Attribute: Measured, Rated

Attribute: Estimated



SYSTEM REPRESENTED AS DATA
(A GENERALIZATION USING LML)
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Presenter Notes
Presentation Notes
This graphic depicts how a system is defined in terms of data 
Consider why this view is so important to implementing MBSE, digital engineering
This diagram provides a beginning to the digital thread
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