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PREFACE 

Model-Based Systems Engineering (MBSE) is a mysterious concept that means many 

things to many different people.  It was envisioned to manage the increasing complexity 

within systems and System of Systems (SoS).  This monograph defines MBSE as the 

formalized application of modeling (static and dynamic) to support system design and 

analysis, throughout all phases of the system lifecycle, and through the collection of 

modeling languages, structures, model-based processes, and presentation frameworks 

used to support the discipline of systems engineering in a model-based or model-driven 

context.    

Despite the almost two-decade emphasis on MBSE adoption and implementation, there 

are still misperceptions which prevent MBSE from achieving its full potential.  This 

monograph seeks to “de-mystify” MBSE by exploring its definition, the application of 

modeling-languages, model structure, model-based processes, and presentation 

frameworks, and the roll of MBSE tools.  Understanding MBSE is fundamental to 

advancing the system engineering and program management disciplines into a future 

environment where complexity is going to need to be controlled to field effective systems. 

This monograph treats MBSE from a high-level, agnostic perspective with respect to 

modeling languages, mode structure, modeling processes, presentation frameworks, and 

modeling tools perspective.  This document is not designed to supplant any books MBSE, 

but to seeks to look at MBSE from a holistic perspective.  The organization of this 

monograph is shown below.  

• Chapter 1 – Introduction.  Provides the background for MBSE. 

• Chapter 2 – The Essence of MBSE.  Suggests a revised definition for MBSE and 

the background on the systems thinking approach where the model is a virtual 

representation of the system. 

• Chapter 3 – Modeling Languages.   Addresses the role of modeling languages in 

MBSE.  While two modeling languages (Systems Modeling (SysML) and 

Lifecycle Modeling Language (LML)) are briefly discussed.  
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• Chapter 4 – Model Structure.  Model structure is a topic that is rarely discussed 

but is an important topic if the model is going to be a virtual representation of the 

system. 

• Chapter 5 – Modeling Processes.   Modeling of systems engineering processes is 

often restricted to those early architectural and analysis issues.  This chapter 

examines additional modeling considerations across the system’s lifecycle.  

• Chapter 6 – Presentation Frameworks.   Architecture frameworks have existed 

since the Zachman Framework was introduced almost 40 years ago.  However, 

these frameworks only show architectural data.  This chapter discusses why the 

current architectural frameworks need to be expanded to include visualization 

across the systems lifecycle. 

• Chapter 7 – Modeling Tools Selection.   “Modeling tool wars” have existed since 

long before MBSE was popularized.  Often the winner of the tool wars is the 

“political” favorite, and not the best solution for the issues that need to me 

modeling.    This chapter provides a “non-political” process for evaluating and 

selecting tools based on the needs of the of the problem being modeled. 

• Chapter 8 – Epilogue.  Provides some concluding thoughts on MBSE to include 

the evolution of MBSE to digital engineering. 

Hopefully, this monograph will provide new insights that will allow for the advancement of 

MBSE for systems-based disciplines. 

 

Warren K. Vaneman 

Sebastian, FL 

January 1st, 2025 
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CHAPTER 1 

INTRODUCTION 

“Advancements in computing, modeling, data management, and analytical 

capabilities offer great opportunities for engineering practice. Applying these tools 

and methods, we are shifting toward a dynamic digital engineering ecosystem. 

This digital engineering transformation is necessary to meet new threats, maintain 

overmatch, and leverage technology advancements.”                                    - 

Kristin Baldwin (2018) 

Models1 have been used in engineering since ancient times to communicate with stakeholders, and 

to gain insights to increases confidence in the design and reduce risk and costs.    The earliest 

models were physical models that included scale models and prototypes to visualize and validate 

design concepts prior to full-scale production.  Mathematical models emerged to describe a 

system’s behavior and predict outcomes using mathematical equations and relationships.  This led 

to simulation models that allowed systems to be evaluated through a time sequence.  More recently 

digital models have emerged for domain-specific models using Computer Aided Design (CAD), 

and visualization models such as 3D and virtual reality models. 

Systems engineering has always been a discipline based on models.  In the early days, those 

systems engineering models took the form of diagrams, documents, and spreadsheets.  For almost 

two decades, the systems engineering has been undergoing a renaissance to transform from a 

document-based to a model-based approach since the International Council on Systems 

Engineering (INCOSE) defined and popularized the term “Model-Based Systems Engineering” 

(MBSE) in 2007 (INCOSE 2007).  This sea-change was prompted by a need to address the 

increasing system complexity2 where the models can appropriately be tailored to changing 

conditions and program needs, re-used, and observed from both static and dynamic perspectives.   

 
1 A model is an abstraction of a system, aimed at understanding, communicating, explaining, and designing aspects 

of the system of interest (SoI). 
2 System complexity refers to the degree of difficulty in understanding, predicting, or managing the behavior of a 

system due to the interactions and interdependencies among its components. This complexity arises from several 

factors: 

- Number of Components - Systems with many parts or elements tend to be more complex. 

- Interactions - The ways in which these parts interact can add layers of complexity, especially if the interactions 

are non-linear or dynamic. 
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This MBSE transformation means more than using model-based tools3 and processes to create 

hard-copy text-based documents, drawings, and diagrams.  Data in a MBSE ecosystem is ideally 

maintained within a single repository and has a singular definition for any model element and 

allows for the static and dynamic representations of a system from several different perspectives 

and levels of decomposition. 

The enduring challenge for program management, engineering, and acquisition is how to deal with 

this increased systems complexity, while ensuring a comprehensive and high-quality design.   

Model-Based Systems Engineering will modernize systems engineering to better support the 

delivery of capability to meet mission needs, and have the following objectives: 

• Increased schedule efficiency and cost saving; 

• Improved insights and understanding of complexity within the system; 

• Better requirements development and management; 

• Encourages re-use within and among models; 

• Facilitates more informed decision-making; 

• Improved collaboration and communication among stakeholder groups; 

• Rapid development of systems and insertion of new technology; 

• Increased understanding of system, and system of systems, interoperability. 

 
- Emergence - Complex systems often exhibit emergent properties, where the whole system behaves in ways that 

are not predictable from the behavior of individual parts. 

- Adaptability - Systems that can adapt or evolve in response to changes in their environment add another layer of 

complexity. 

- Uncertainty- The presence of uncertainty or randomness in the system's behavior can make it more complex to 

analyze and predict (SEBoK, n.d.). 

 
3 A model-based tool is a software application or system used to develop models that represent, design, analyze, 

and manage complex systems. These tools serve as the primary means of information exchange throughout the 

system's lifecycle and helps visualize and simulate various aspects of a system, such as its requirements, behavior, 

and structure, making it easier to understand and manage complex interactions and dependencies. 
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CHAPTER 2 

THE ESSENCE OF MBSE 
 

“MBSE is fundamentally a thought process.  It provides the framework to allow the systems 

engineering team to be effective and consistent right from the start of any project.  At the same 

time, it is flexible enough to allow the ‘thought’ process to adapt to special constraints of 

circumstances present in the problem.”    – David Long and Zane Scott (2011)                                  

The fundamental objective of systems engineering is to facilitate a process that consistently leads 

to the development of successful systems.  A system is an integrated set of elements, designed to 

function together to achieve some defined objective.  The key words of this definition are: 

• Integrated – A series of system elements that when combined work as one; 

• Design – The deliberate planning and arranging of system elements; 

• Function – The way in which the integrated system elements work together through rules 

and procedures that were established during the design; 

• Objective – The purpose, or goal, the system was designed to satisfy. 

It is clear from this definition that the system is more than the physical components but includes 

all aspects4 of the system of interest (SoI).  As sub-systems are added to systems, and systems are 

 
4 A system can be understood through several key aspects, each contributing to its overall functionality and 

behavior: 

- Components - These are the individual parts or elements that make up the system. Each component has a 

specific role and function within the system. 

- Interactions - The ways in which the components of a system interact with each other. These interactions can be 

physical, informational, or functional. 

- Boundaries - The limits that define what is inside and outside the system. Boundaries help to distinguish the 

system from its environment. 

- Environment - Everything outside the system's boundaries that can affect or be affected by the system. The 

environment provides inputs to the system and receives outputs from it. 

- Inputs and Outputs - Inputs are resources, information, or energy that enter the system, while outputs are the 

results or products that leave the system. 

- Processes - The activities or operations that transform inputs into outputs. Processes are the mechanisms 

through which the system achieves its goals. 
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added to System of Systems (SoS), interfaces grow nonlinearly.  Interfaces and interactions are 

often difficult to comprehend, with a cascading effect leading to an uncertain and incomplete 

architecture that fails to account for emergence within the system.  As a result, complexity has 

emerged as an enduring, and most significant, challenge of systems engineering.   

To address the “complexity” challenge, systems engineering is adopting a model-based approach.  

The system model serves as a virtual representation of SoI through a set of entities and 

relationships that represent the system’s elements, functions, objectives, and every other aspect of 

the system.  Ideally, each entity is represented in the model as many times it is represented as an 

element in the actual system – only once.  To illustrate this concept the “dimensions” of a system 

project must be considered. Assume that the cube in Fig. 1 (Vaneman et al., 2019) is a SoI. The 

system has “width” that provides insight across the entire system lifecycle from the definition of 

need to system disposal. The system has “height” which provides for the decomposition from the 

holistic view of the system at the highest level to the components, and eventually the parts, at the 

lowest levels.  The system also has “depth,” which includes the complex relationships between 

systems, functions, requirements, analysis, risk, costs, schedule, etc. (Vaneman, 2016). 

 
- Feedback - Information about the system's performance that is used to make adjustments and improvements. 

Feedback can be positive (reinforcing) or negative (corrective). 

- Goals and Objective- The purposes or desired outcomes that the system is designed to achieve. Goals guide the 

system's operations and development. 

- Structure- The arrangement and organization of components within the system. Structure determines how 

components are connected and interact. 

- Emergent Properties - Characteristics of the system that arise from the interactions of its components, which 

cannot be predicted by examining the components individually 
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Figure 1: Dimensions of a Systems Engineering Project (Vaneman, et al., 2019) 

Model-Based Systems Engineering was envisioned to transform systems engineering’s reliance on 

document-based work products to engineering environment based on models.   INCOSE (2007) 

defines MBSE as “the formalized application of modeling to support system requirements, design, 

analysis, verification and validation, beginning in the conceptual design phase and continuing 

throughout development and later life cycle phases.”  While this definition captures the lifecycle 

perspective, it does not give any indication how MBSE is different than traditional systems 

engineering given that “models” have always been a cornerstone of the systems engineering 

discipline. 

An enhanced, and more sufficient, definition of MBSE is “the formalized application of modeling 

(static and dynamic) to support system design and analysis, throughout all phases of the system 

lifecycle, through the collection of modeling languages, structures, model-based processes, and 

presentation frameworks used to support the discipline of systems engineering in a ‘model-based’ 

or ‘model-driven’ context” (Vaneman, 2016).   The four components of MBSE are depicted in Fig. 

2, and are defined as: 

• Modeling Languages – Serves as the basis of tools, and enables the development of system 

models.  Modeling languages are based on a logical construct (visual representation) and/or 

an ontology.  An ontology is a collection of standardized, defined terms and concepts and 

the relationships among the terms and concepts (Dam, 2019).  
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• Structure – Defines the relationships between the system’s entities.  It is these structures 

that allow for the emergence of system behaviors and performance characterizations within 

the model. 

• Model-Based Processes – Provides the analytical framework to conduct the analysis of 

the system virtually defined in the model.  The model-based processes may be traditional 

systems engineering processes such as requirements management, risk management, or 

analytical methods such as discrete event simulation, systems dynamics modeling, and 

dynamic programming. 

• Presentation Frameworks - Provides the framework for the logical constructs of the 

system data in visualization models that are appropriate for the given stakeholders.  These 

visualization models take the form of traditional systems engineering models.  These 

individual models are often grouped into frameworks that provide the standard views5 and 

descriptions of the models, and the standard data structure of architecture models.  

 

Figure 2. Components of MBSE. 

Maximum MBSE effectiveness occurs at the convergence of the four components, therefore 

MBSE tools strive to not only be within this convergence, but to capitalize on various aspects to 

 
5 A “view” is a representation of a related set of information using formats and representations of data in any 

understandable format that conveys the meaning of the data. 
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give them a competitive market advantage.  Model-Based Systems Engineering tools are general 

purpose software products that use modeling languages, and support the specification, design, 

analysis, validation, and verification of complex system representations.  These tools serve as the 

basis of the MBSE ecosystem.   

In an MBSE ecosystem, each entity is represented as data, only once, with all necessary attributes 

and relationships of that entity being portrayed.   This data representation then allows for the entity 

to be explored from the various engineering and programmatic viewpoints.  A viewpoint describes 

data drawn from one or more thematic perspectives and organized in a particular way useful to 

management decision-making.  The compilation of viewpoints (e.g. capability, operational, 

system, programmatic viewpoints, etc.) represents the entire system, where the system can be 

explored as a whole, or from a single perspective.    

Systems have structures that consist of “building blocks” and their relationships to each other that 

allows them to come together in a designed form that satisfies the desired system capabilities and 

functionality.  These structures are governed by the property of concordance.  Concordance is the 

ability to represent a single entity, such that data in one view, or level of abstraction, matches the 

data in another view, or level of abstraction, when talking about the exact same thing. This allows 

for complexity to be managed more efficiently because each entity is ideally represented in the 

model only once, essentially creating a virtual representation of the system in the model.  Systems 

engineering views are generated from the data (Vaneman, 2016). 

Often the MBSE ecosystem is contained in a single tool with its own data repository.  While 

desirable, it may not be feasible due to the size and scope of the SoI model.  Regardless, if the 

ecosystem is a single tool and data repository, or is composed of multiple tools, and possibly an 

integrated data repository, the four components must be present and followed for the MBSE 

ecosystem to be fully effective.   

One of the challenges continually faced by program managers and chief engineers is defining the 

value of MBSE.  Many promises have been made about MBSE saving time and rework through 

the efficient use of data, and early identification of issues that can be detected in the model versus 

a physical prototype, but there are no suitable MBSE metrics that can be compared to traditional 

systems engineering processes to determine if any of the claims made about MBSE are valid.   
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Table 1 identifies seven qualitative MBSE effectiveness measures (Friedenthal and Burkhart, 

2015) that will be used to provide an assessment and forecast of the four components of MBSE. 

Table 1. MBSE Effectiveness Measures and Definitions. 

Effectiveness 

Measure 
Definition 

Expressiveness The ability to express system concepts to include at a minimum capabilities, functional, system, 

standards, and programmatic concepts. 

Precise System representation is unambiguous and concise as needed at various levels of data 

abstraction.   
Presentation/ 
Communication 

Ability to effectively communicate with diverse stakeholders. With standard systems 

engineering and fit-for-purpose views, answering the questions  who, what, when, where, why, 

and how. 

Model 

Construction/ 
Manageability 

Ability to efficiently and intuitively construct and manage models, to include normal model 

construction and model extensions for special or domain-specific concepts and terminology. 

Interoperable/ 
Logical Consistency 

Ability to exchange and transform data with other models and structured data to include various 

numeric and non-numeric analysis tasks. 

Usable The ability for stakeholders to efficiently and intuitively create, maintain, and use the model. 

Concordance/ 
Referential Integrity 

The ability to represent singularly entity data such that data in one view, or level of abstraction, 

matches the data in another view, or level of abstraction, when talking about the exact same 

thing. 
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CHAPTER 3 

MODELING LANGUAGES 
 

“Languages shapes the way we think and determines what we can think about.”   - Unknown 

Written and spoken languages use different words, syntax6, and semantics7 to describe the same 

thing.   Similarly, despite their differences modeling languages all describe the same thing – the 

SoI.  Modeling languages serve as the basis of tools and enable the development of system models.  

These languages are based on a graphical representations and/or a data schema.  While the 

languages serve as the foundation for MBSE tool development, tool vendors often interpret the 

languages to enable the best implementation for their tools.   Thus, while a common language is 

used, the MBSE tools can be very different.  For example, MBSE tools that are based on SysML 

support a common set of graphical models, but typically have unique data schemas (Vaneman, 

2016). 

The foundation of the MBSE ecosystem is the modeling languages that enable the tools.  While 

these languages have achieved prominence with the System Modeling Language (SysML) during 

the past decade, the origins can be found in the Structured Analysis and Structure Design (SA/SD) 

diagrammatic approach that was popular in the 1970s, and the Booch object-oriented software 

development method in the mid-1990s.   Both approaches represented the logical and structural 

aspects of a SoI with a set of diagrams (Wikipedia, n.d.). 

Following the spirt of SA/SD and the Booch object-oriented software approach, the Unified 

Modeling Language (UML) was developed in the late 1990s as a general-purpose object-oriented 

graphical modeling languages are intended to provide a standard representation of SoI, primarily 

for software development (Booch, et al. 2005 p. 496).   The UML contains 14 diagrams within 

two pillars – structure and behavior diagrams.  (OMG, 2014). 

 
6 Syntax in written language is the way words into phrases, clauses, and sentences to create meaning and convey 

impact.  
7 Semantics in written language is the study of meaning and interpretation in words, symbols, and sentence structure. 
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Given the successes of UML, INCOSE and the Object Management Group (OMG) developed 

SysML as an object-oriented, general-purpose graphical modeling language for specifying, 

analyzing, designing, and verifying complex systems that may include hardware, software, 

information, personnel, procedures, and facilities (Friedenthal, et al. 2015).  As a profile of the 

UML metamodel, SysML uses seven of the 14 diagrams (views) from UML, plus two new models 

based on the needs of the systems engineering discipline.  The nine views are categorized into four 

“pillars” (viewpoints) (behavior, structure, requirements, and parametric), and support 

requirements specification, analysis, design, validation, and verification, for systems that include 

hardware, software, information, process, and people.  The four SysML pillars, and their associated 

views and descriptions are shown in Fig. 3-5 (OMG, 2012). 
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Package Diagram – 

Describes how a system is 

divided into logical groupings 

by showing the dependencies 

among the groupings. 

 

Block Definition Diagram – 

Depicts the principal parts of a 

system as a series of blocks, 

with interconnections to 

represent the relationships. 

 

 

 
 

Internal Block Diagram – 

Describes the internal 

structure of a system in terms 

of component properties, and 

the relationship of the 

constituent parts. 

Fig. 3.  SysML Structure Pillar Views. 
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Use Case Diagram - Depicts the 

system’s functionality in terms of actors, 

dependencies between use cases, and use 

case goals. 

 

Activity Diagram – Describes the 

inputs, outputs, and controls of the 

system activities. 

 

Sequence Diagram – visual 

representation of how objects in a system 

interact over time. 

 

 

State Machine Diagram – Describes 

the states and the state transitions of the 

system. 

Fig. 4.  SysML Behavior Pillar Views. 
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Requirements 

Diagram – Provides 

a graphical 

representation of 

functional and non-

functional system 

requirements. 

 

Parametric 

Diagram – 

mathematical 

equations by 

modeling system 

elements. 

 

Fig. 5.  SysML Requirements and Parametric Pillar. 

SysML 2.0 is currently being introduced and being implemented in MBSE tools.  Unlike SysML 

1.0, SysML is not a profile of the UML metamodel.  In addition to graphical representations, 

SysML 2.0 includes a modeling language based on the Kernel Modeling Language (KerML)8 

(OMG, 2023), and an application programming interface (API).  KerML provides a textual 

notation that allows for the expression to precisely represent a SoI, the elements, and the 

environment.   The API provides a standard set of exchange services that can interact with SysML 

2.0 to exchange model data among tools (Bajaj, 2022).  Fig. 6 is an example of a SysML 2.0 

activity diagram and associated KerML code. 

 
8 KerML is an application-independent modeling language with defined semantics for modeling SoI and includes a 

general syntax for developing and structuring model relationships, annotations and namespaces (OMG, 2023).  
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Fig. 6.  SysML 2.0 Activity Diagram and Associated Code. 

The Lifecycle Modeling Language (LML) was introduced as an attempt to provide a simpler 

language for planning, specifying, designing, analyzing, building, and maintaining modern 

complex systems.  The language takes the principles of MBSE beyond development and 

production and into the conceptual, utilization, support and retirement stages.  It provides a robust, 

easy to understand ontology9 that allows you to model complex interrelationships between system 

components and programmatic artifacts, as well as express system information using easy to 

understand diagrams.  

LML was designed to integrate all lifecycle disciplines, such as program management, systems 

engineering, testing, deployment and maintenance, into a single framework. As a result, LML can 

be used throughout the lifecycle. LML uses common, everyday language to define its modeling 

elements such as entity, attribute, schedule, cost, and relationship.   Its primary modeling constructs 

are the box (which represents any part of the system that is necessary) and the directed arrow 

 
9 An ontology is a collection of standardized, defined terms and relationships between the terms to capture the 

information that describes the physical, functional, performance, and programmatic aspects of a system (LML Steering 

Committee, 2022).   
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(which depicts a relationship between modeled elements such as “consists of,” “derived from,” or 

“costs”) (LML Steering Committee, 2025 (pending)).  

LML combines logical constructs with a corresponding ontology, thus expressing a wide range of 

entity classes, relationships, and attributes to capture engineering and programmatic information 

(Vaneman, 2016).  The language uses a simplified ontology10 of 12 primary and eight secondary 

entity classes to capture the system characteristics, relationships, and interactions.   Table 2 shows 

the LML entities and their definitions (LML Steering Committee, 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 
10 Common ways of describing such ontologies is entity classes, relationship, and attribute (ERA). ERA is often 

used to define database schemas. LML uses the ERA approach but extends it by adding attributes to relationships. 

The extension reduces the number of relationships needed, just as attributes reduce the number of entities needed 

(Lifecycle Modeling Language Steering Committee, 2025 (pending)). 
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Table 2.  LML Entity Classes and Definitions. 

Entity Class Definitions 

Action An Action entity specifies the mechanism by which inputs are transformed into outputs. 

Artifact 
An Artifact entity specifies a document or other source of information that is referenced by or generated 

in the knowledgebase. 

Asset 
An Asset entity specifies an object, person, or organization that performs Actions, such as a system, 

sub-system, component, person, or element. 

Resource 

(Asset) 

A Resource is a child entity of Asset that specifies a consumable or producible Asset 

Port (Asset) 

A Port entity is a child entity of Asset that represents an interaction point of a block, specifying the 

input and output flow. 

Port in included so the MBSE tools based-on LML can be SysML compliant. 

Characteristic A Characteristic entity specifies properties of an entity. 

Measure 

(Characteristic) 

A Measure specifies properties of measurement and measuring methodologies.  

Connection A Connection entity specifies the means for relating Asset instances to each other. 

Conduit 

(Connection) 

A Conduit is a child entity to Connection that provides a means for physically transporting 

Input/Output entities between Asset entities.  Conduits are constrained by the attributes of capability and 

latency. 

Logical 

(Connection) 

A Logical entity is a child entity to Connection that represents the abstraction of the relationship 

between any two entities. 

Cost 
A Cost entity specifies the outlay of expenditure made to achieve an objective associated with another 

entity. 

Decision A Decision entity specifies a challenge and its resolution. 

Input/Output 
An Input/Output entity specifies the information, data, or object input to, trigger, or output from an 

Action. 

Location A Location entity specifies where an entity resides.   

Physical 

(Location) 

A Physical entity is a child entity of Location that specifies the location on, above, or below the surface. 

Orbital 

(Location) 

An Orbital entity is a child entity of Location that specifies a location along an orbit around a celestial 

body. 

Virtual 

(Location) 

A Virtual entity is a child entity of Location that specifies a location within cyber space or a physical 

network. 

Risk A Risk entity specifies the combined probability and consequence in achieving objectives 

Statement 
A Statement entity specifies text referenced by the knowledgebase and is usually contained in an 

Artifact. 

Requirement 

(Statement) 

A Requirement is a child entity to Statement that identifies a capability, characteristic, or quality factor 

of a system that must exist for the system to have value and utility to the system or user 

Time 
A Time entity specifies a point or period when something occurs or during which an action, asset, 

process, or condition exists or continues 

Equation 
An Equation entity specifies a mathematical or logical equation that can be used to describe a portion 

of the model.  Equation is included so the MBSE tools based-on LML can be SysML compliant. 
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A fundamental tenet of LML is that each entity class has at least one corresponding visualization.   

The entities and their graphical models are represented in four areas: functional models; physical 

models; documentation entities; and parametric and program entities.  Many LML models are 

equivalent to the familiar models that have been developed over time by UML, SysML, Business 

Process Modeling Notation (BPMN), and other engineering disciplines such as electrical 

engineering.  These common visualizations should be as simple as possible to reduce the 

complexity of the language and make it more understandable to stakeholders. Other visualizations 

are encouraged to be used with LML as they aid in expressing information, which is the real goal 

of any language visualizations (LML Steering Committee, 2025). 

As written and spoken languages can be translated, so can modeling languages.  The common 

denominator among the modeling languages are the diagrams.  (Vaneman, et al., 2023).  Table 3 

shows the translation between LML entities, related LML views, and SysML views (Vaneman, 

2018).  
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Table 3. LML Entity Classes and Translation between LML to SysML. 

Entity Class LML Graphical 

Representations 

SysML Graphical Representations 

Action Action Diagram, Sequence 

Diagram 

Activity Diagram, Sequence Diagram, 

Use Case Diagram 

Artifact Photo, Diagram, etc.  

Asset Asset Diagram Block Definition Diagram, Internal Block 

Definition Diagram 

Resource (Asset) Asset Diagram Block Definition Diagram, Internal Block 

Definition Diagram, Package Diagram 

Port (Asset) Asset Diagram Internal Block Definition Diagram 

Characteristic State-Machine, Entity-

Relationship, and Class 

Diagrams 

State-Machine Diagram 

Measure 

(Characteristic) 

Hierarchy, Spider, and Radar 

Charts 

Parametric Diagram 

Connection Asset Diagram Block Definition Diagram, Internal Block 

Definition Diagram 

Conduit (Connection) Asset Diagram Internal Block Definition Diagram 

Logical (Connection) Entity-Relationship Diagram Internal Block Definition Diagram 

Cost Pie/Bar/Line Charts N/A 

Decision  Spider Diagram, Hierarchy 

Diagram, Tree Diagram 

Package Diagram 

Input/Output State-Machine Diagram State-Machine Diagram 

Location Map N/A 

Physical (Location) Geographic Maps N/A 

Orbital (Location) Orbital Charts N/A 

Virtual (Location) Network Maps N/A 

Risk Risk Matrix N/A 

Statement Hierarchy Diagram, 

Requirements 

Requirements Diagram 

Requirement 

(Statement) 

Hierarchy Diagram, 

Requirements 

Requirements Diagram 

Time Gantt Chart, Timeline Diagram N/A 

 

Modeling languages such as LML, UML, SysML, SysML 2.0 (in the future) support a the 

specification, design, analysis, verification, and validation of complex SoI, there are other 

languages that should be considered for addressing problems and processes through the system’s 

lifecycle.  These include languages used for numerical analysis – a class of problems often 

overlooked by the systems engineering community.  Table 4 shows a sampling of several popular 

modeling languages for the modeling and analysis of systems. 
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Table 4.  Popular Languages for the Modeling and Analysis of Systems. 

Modeling Language Description 

Architecture Analysis and 

Design Language (AADL) 

Language used for modeling and analyzing the architecture of embedded systems, 

particularly in avionics and automotive industries. It helps in performance analysis and 

ensures system reliability. 

Business Process Model and 

Notation (BPMN) 

A graphical representation for specifying business processes in a business process model. 

It provides a standard notation that is understandable by all business stakeholders, 

including business analysts, technical developers, and business managers 

Lifecycle Modeling Language 

(LML) 

An open-standard modeling language designed for systems engineering.  It support the 

entire system’s lifecycle.  (LML Steering Committee, 2022). 

MATrix LABoratory 

(MATLAB)  

A high-level programming language and numerical computing environment developed 

by MathWorks. It is based-on matrix and array mathematics, which support matrix 

algebra and numerical computations. 

 

Modelica 

An object-oriented language for modeling complex physical systems.  It is used for 

simulation and analysis in various engineering domains, including mechanical, electrical, 

and control systems. 

 

Simulink 
A graphical programming environment for modeling, simulating, and analyzing 

multidomain dynamical systems. 

System Definition Language 

(SDL)  

A structured modeling language based on am Entity, Relationship, Attribute (ERA), to 

model a system’s architecture.  SDL is used within ViTech’s systems engineering tools. 

System Modeling Language 

(SysML) 

A graphical systems engineering language to support the specification, design, 

verification and validation of systems 

System Modeling Language 

(SysML) 2.0 

The next-generation Systems Modeling Language, developed to improve the precision, 

expressiveness, and usability of the original SysML (Systems Modeling Language). It 

aims to enhance MBSE practices by addressing limitations and incorporating lessons 

learned from SysML 1.0 

Unified Modeling Language 

(UML) 

A general-purpose, graphical modeling language primarily used for software engineering 

but also applicable to systems engineering 

 

Modeling languages serve as the foundation for MBSE tool development, vendors often interpret 

the languages to enable the best implementation for the goals of their tools.   While a common 

language is used, the differences in the implementation of tool data schema often limits the ability 

to effectively exchange data.  For example, MBSE tools that are based on SysML support a 

common set of visual models, but typically have unique data schemas making exchanging data 

between different tools difficult, if not impossible (Vaneman, 2016).  Table 5 shows the assessment 

and forecast of modeling languages to the MBSE effectiveness measures. 
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Table 5. Modeling Languages Assessment and Forecast. 

Effectiveness 

Measure 
Modeling Languages 

Expressiveness 
Recent developments in modeling languages allow MBSE to be more expressive. However, 

the strength of current modeling languages is for the early lifecycle phases.  The languages 

need to be expanded to be expressive of the full system lifecycle with data represented by 

additional graphical representations.    

Precise 

Current languages are attempting to add precision, but these efforts are decentralized and 

uncoordinated.   LML has a parsimonious ERA language that provides a manageable set of 

entities from which to develop models.  KerML defines the syntax and semantics for SysML 

2.0, which should add to precision. As modeling-languages are expanded to include the full 

system lifecycle, an equal amount of precision needs to be added to each lifecycle phase. 

Presentation/ 

Communication 

Presentation frameworks don’t have any unique views, but renames and uses existing 

systems engineering graphical representations.  Therefore, the architecture frameworks 

within MBSE tools are based on the modeling language that the tool is based on.  As graphical 

representations in modeling languages are expanded, the views in presentation frameworks 

will also be expanded.  

Model Construction/ 
Manageability 

The ease of model construction is based on how tool vendors implement the modeling 

languages.  LML and SysML 2.0 now can develop models by two methods. Both languages 

can develop the models graphically; LML can develop models from a data perspective; 

models in SysML 2.0 can be generated via the code based KerML. 

Interoperable/ 
Logistical 

Consistency 

Another major area for modeling language improvement is interoperability and logical 

consistency.  SysML 2.0 has an API that should make sharing data between models more 

effective and efficient.  However, exchanging models between different SysML 2.0 MBSE 

tools has yet to be proven.  LML allows for data to be exchanged via an xmi interface, which 

works well between LML-based models, but not between other tools.  While having multiple 

modeling languages is desired for the health of MBSE, a common interface exchange needs 

to be developed that will support existing and future modeling languages. 
Usable The usability of modeling languages is dependent on how it is implemented in MBSE tools. 
Concordance/ 
Referential Integrity 

All modeling languages can make relationships between entities.  These relationships allow 

for concordance and emergent behavior.     
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CHAPTER 4 

MODEL STRUCTURE 
 

“Creativity is the power to connect the seemingly unconnected.” 

– William Plomer 

 

Structure is probably the least understood aspect of MBSE.  Like “creativity” in the William 

Plomer quote, model structure is the power to connect the seemingly unconnected.  Systems consist 

of “building blocks” and their relationships to each other that allow them to come together in a 

designed form that satisfies the desired capabilities and functionality.  Model structures establish 

concordance and define the relationships between the system entities that allows for the emergence 

of system behaviors and performance characterizations within the model.  The conceptual data 

model describes the elements, attributes, and relationships that can be made within the model. 

MBSE implementations often do not apply model structures efficiently, thereby causing data to be 

represented in the model more than once - which is tantamount to document-based artifacts.  This 

often results in data maintenance errors, leading to different representations of the same data in 

different viewpoints, thereby failing to take advantage of a key benefit of MBSE. 

All modeling languages have the ability to make relationships within the model.  In graphical based 

languages, such as SyML, a relationship path can be formed by selecting an entity and navigating 

the relationship to another entity (Friedenthal, et al., 2015).  For example, in SysML, a function in 

an activity model can be allocated to a system entity in an internal block definition diagram (IBD).  

A value is an IBD can be assigned to an equation in a parametric diagram to represent a system 

measure.  A value in a parametric diagram can verify a requirement in a requirements diagram. 

And a requirement can be related to a system entity in the IBD to be satisfied. 

An ERA-based modeling language represents structure by defining the relationships between 

entities.  The relationship between the 20 primary and secondary entities of LML use an economy 

of relationships approach, which is assisted by the bi-directional nature of relationships to the 

entities.  Each entity has a one-to-many, or many-to-many, possible relationships within the matrix.  

Thus, for 20 defined entities, the total possible combinations is not 202 or 400 combinations but 
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approaches 20! or 2.43 x 1018 combinations.  This phenomenon allows the complexity of the SoI 

to be modeled while having a manageable entity and relationship “vocabulary,” at the atomic level.  

Fig. 7 shows an extraction of the LML relationship matrix (LML Steering Committee, 2022). 

 

Fig. 7.   Insert of the LML relationship matrix (LML Steering Committee, 2022). 

It can be daunting to begin a modeling effort when there are 1018 possible combinations.  The 

relationships within the matrix should be used as a guide to create a conceptual data model (CDM) 

that is specific to a SoI.  A CDM is a mapping of acceptable entities and relationships within the 

system.  It serves as the “blueprint” for the planning and building of the system model.   Engineers 

would not consider building a complex system without a plan, so why should a complex system 

model be developed without a CDM? 

Fig. 8 represents a notional CDM of a SoI. The CDM has four viewpoints: policy and standards 

viewpoint (shown in yellow); operational viewpoint (shown in orange); systems viewpoint (shown 
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in blue; and programmatic viewpoint (shown in green).  Each viewpoint is composed of entities, 

examples of entities in {}, and associated relationships, used to represent the virtual representation 

of the SoI.   Each data representing an element with the SoI should be modeled as many times as 

it is represented in the SoI – only once.  This modeling approach allows for concordance to be 

achieved within the model.    

The systems engineering process begins with the definition of need which is usually contained in 

document that is defined by an Artifact.  Artifacts {Policy, Guidance, Governance, Standard} are 

inputs to the systems engineering process, which are not meant to be changed within the 

development of the model.   While the Artifact is the source of, the data can be parsed into 

individual Statements {Need, Goal, Objective, Assumption} which provide the actional 

background needed to develop the SoI.   

The Requirements {Originating} are traced from the Statements and serve as the source of the 

requirements that the SoI must support.   Requirements {Originating} are traced to Action 

{Capability}.  A capability is a solution-neutral statement that states the SoI much achieve a 

desired effect under specified conditions.    Action {Capability} is related to Action {Activity} can 

be further related to Action {Function}.   

 

Fig. 8.  Conceptual Data Model Example. 



24 

 

Activities and functions both represent specific actions to achieve the desired objective.  The 

difference is, an activity is associated with the operational steps that are taken, while functions 

represent what the system is performing.  Action {Capability, Activity, Function} generate/receive 

Input/Output {Data, Information, Energy, Trigger} from an operational perspective. 

Inputs/Outputs {Data, Information, Energy, Trigger} are transferred via Connections {Conduit, 

Interface, Data Link, Pipe}.  Connections connect Assets to other Assets.  The difference between 

Inputs/Outputs and Connections are, Inputs/Outputs represents the commodity that is being 

transferred between Actions, while Connections are the physical interfaces between Assets.  

Inputs/Outputs and Connections need to be modeled concurrently because the physical interfaces 

need to be properly sized to support the commodity that is being transferred.    

Assets are specified by Characteristics which represent qualitative and quantitative “ilities’ (e.g. 

reliability, availability, composability, useability).  When the Characteristics are quantitative, they 

can be further defined by Measures {Measures of Effectiveness (MOE), Key Performance 

Parameters (KPP), Measures of Performance (MOP), and Technical Performance Measures 

(TPM)}.  Assets also have a Location {Physical, Virtual, Orbital}. 

The Program Management Viewpoint depicts the relationships between Action and Time {Phase, 

Milestone, Schedule}.  Assets specify Risks {Cost, Schedule, Technical} and incurs Cost {Actual, 

Planned, Total Ownership}.  Cost, Risk, and Time are related to Decision {Major Decision, 

Problem, Resolution, Challenge, Issue}. 

To realize a true virtual representation of the SoI, model structure must be implemented into the 

modeling-process.  Given the over-reliance on document-based processes in system engineering, 

applying model structure to form the virtual representation of the system may seem unnatural.  

Model structure requires a mindset change to realize the benefits of MBSE.  These benefits include 

gaining insights into SoI connectedness and emergent behavior.  Table 6 depicts the assessment 

and forecast of model structure to the MBSE effectiveness measures. 
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Table 6. Model Structures Assessment and Forecast. 

Effectiveness 

Measure 

Model Structure 

Expressiveness 
Model structures are used to ensure that data can be expressed efficiently by modeling 

the data, relationships, and attributes only once.  This establishes concordance and 

allows for emergent behavior that identifies SoI characteristics that heretofore have 

been unrealized.   

Precise 

Model structures ensure a precise representation of the data by modeling the data, 

relationships, and data only once.  Many current MBSE implementations fail to use 

model structures fully, thereby causing data to be represented in the model more than 

once, which could yield in-precise data representations, especially as the data is 

upgraded during the life of the model.  

Presentation/ 

Communication 

Model structures allow for the presentation of a system from a common data set.  

Many current implementations are still based on the traditional systems engineering 

product paradigm.  Therefore, concordance is not guaranteed across different 

viewpoints.   
Model Construction/ 
Manageability 

Tool dependent.  Model structures are implemented differently in various tools.   

Interoperable/ 
Logistical 

Consistency 

Tool dependent.  Because model structures are currently tool dependent, exchanging 

data, and maintaining the data relationships and attributes is problematic. 

Usable Model structures will make the data usable by representing the data only once.  

However, this requires a mindset change to be effective. 

Concordance/ 
Referential Integrity 

Model structures are at the heart of concordance.  Without model structures, 

concordance cannot exist.  However, many current implementations focus on 

collecting and populating data from a product perspective, thereby overlooking 

concordance. 
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CHAPTER 5 

MODELING PROCESSES 
 

“The enterprise architecture must serve as the glue and bridge between the vision and its 

execution.”  - Kevin Brett (2022) 

Model-based processes provide the analytical framework to conduct the analysis of the system 

virtually defined in the model.  The model-based processes may be traditional systems engineering 

processes such as requirements management, risk management, or analytical methods such as 

discrete event simulation, systems dynamics modeling, and dynamic programming. 

In both traditional systems engineering processes, and in MBSE, different analytical approaches 

are used to address the various challenges throughout the system’s lifecycle.  The primary 

difference with MBSE is, ideally, the system data is collected once, and used to address the many 

system’s challenges.    

There are some common misperceptions about MBSE processes.  One misperception is that MBSE 

is just systems engineering conducted in a model-based tool but yields traditional engineering 

products.   To be effective, the organization must change its processes to get the most benefit from 

MBSE.  Another misperception is that there is a “one size fits all solution” for MBSE processes.  

Like traditional systems engineering processes, MBSE processes must be tailored for the given 

system problem.   A generic process can serve as a guide to satisfy model-based efforts throughout 

the systems engineering lifecycle (DoD CIO, 2009). 

The MBSE effort starts by determining the intended use of the model, which permits proper model, 

data, and data structure and definition.  “Intended Use” is a description of the problem to be 

addressed by a model or simulation, and its associated data, including the system or process being 

represented and the role it plays in the overall program.  Intended use is defined by answering the 

following questions below: 

• What problem is being addressed? 
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• What are the key attributes of the problem (focus, epoch, data and model fidelity, model 

type(s), and viewpoints to adequately portrait the data and results)?  Table 7 defines the 

key model attributes. 

Table 7. Key Model Attributes Defined. 

Attribute Definition Examples 

Focus The system level that is the focus of the model’s 

intended use. 
• Component 

• Sub-system 

• System 

• System of Systems 

Epoch The planned time period that the model intends to 

simulate. 
• Current 

• Near-term (1- 5 years) 

• Long-term (> 5 years) 

Fidelity The degree to which the model  reproduces the state 

and behavior of the real-world environment and 

systems. 

 

Fidelity is a subjective measure, however, accuracy, 

precision, repeatability, resolution, scope, and 

sensitivity. 

• High fidelity – Measures, standards, 

and perceptions are very similar to 

real-world systems and environment. 

• Medium fidelity – Measures, 

standards, and perceptions are 

somewhat similar to real-world 

systems and environment. 

• Low fidelity - Measures, standards, 

and perceptions are marginally similar 

to real-world systems and 

environment. 

Model Types The type and level of model required to achieve the 

analysis purposes of the intended use. 
• Static Model – A model that depicts a 

system, and dependencies, at an instant 

in time.  

• Dynamic Model – A model that 

depicts a system, its dependencies, and 

behavior as a function of time.  

Viewpoints Describes data drawn from one or more perspectives 

and organized in a particular way useful to 

management decision-making. A viewpoint 

definition includes the information that should appear 

in individual views; how to construct and use the 

views; the modeling techniques for expressing and 

analyzing the information; and a rationale for these 

choices.  

• Capability  

• Operational  

• Technical and Standard 

• Systems 

• Services 

• Parametric 

• Requirements 

 

The second step is to determine the scope of the systems engineering problem.  The following 

questions should be considered when determining the scope of the MBSE effort: 

• What are the functional bounds of the system? 
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• What are the technological bounds of the system? 

• What are the geographical bounds of the system? 

• What are the system constraints? 

System boundaries are often difficult to determine.  Sometimes the systems engineer will expand 

the boundary of their system to simplify interfaces or inputs.  A good rule of thumb to determine 

the system boundary is, does the system have the requirements and funding for the element in 

question?  If the system’s controlling agency does not have jurisdiction of the requirements or 

funding of the element, it resides outside the boundary of the system. 

The third step is to determine the data required to support the MBSE effort.  Data takes on several 

dimensions in this step.  What data elements are needed?  This includes data from different 

perspectives (i.e. capability, functional, system, parametric, etc.) to be represented in various 

viewpoints later in the process.   

What level of detail does the data need to support?  It is often the practice to over-collect data to 

the lowest possible level.   Data only needs to be collected to the level required to address the 

systems engineering problem.  Collecting data at a lower-level results in a waste of resources and 

time. Data that is collected to address future detailed concerns will incur a cost to maintain its 

accuracy. 

The fourth step is to collect the data and make relationships between the data.  Correlating the data 

to form relationships allows for concordance that was discussed in the Model Structure section. 

The data relationships for LML governed by rules defined the LML Relationships Matrix (Fig. 8) 

and are further defined for each program by the CDM.   

The fifth step is to conduct the analysis in support of the MBSE objectives.  Traditional MBSE 

analysis often uses architectural data to conduct capability analysis, gap analysis, interoperability 

analysis, and architecture closure.  To be most effective, MBSE must include analysis types found 

in operations research (i.e. discrete event simulation, optimization, etc.), and system dynamics 

modeling, in addition to architectural analysis.  Table 8 shows the attributes of modeling analysis 

for each phase in the systems engineering lifecycle. 
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Table 8. Attributes of Modeling Analysis Throughout the Systems Lifecycle. 

Lifecycle 

Phase 

Focus Epoch Fidelity Analysis Type 

 

Conceptual  

Design 

• Single System 

• Multiple 

Systems 

• System of 

Systems 

• Near-term 

(1- 5 years) 

• Long-term 

(> 5 years) 

Medium 

Low 

 

• Capability Analysis  

• Gap Analysis 

• Mission Analysis  

 

 

 

Preliminary 

Design 

• Single System 

• Multiple 

Systems 

• System of 

Systems 

• Near-term 

(1- 5 years) 

• Long-term 

(> 5 years) 

High 

Medium 
• Operational Modeling and 

Architecting 

• System Modeling and 

Architecting 

• Performance Analysis 

(Predictive)11 

• Requirements Analysis12 

 

 

Detailed 

Design 

• Component 

• System 

• Multiple 

Systems 

• System of 

Systems  

• Current 

• Near-term 

(1- 5 years) 

• Long-term 

(5 years <  t 

< 10 years) 

High 

Medium 

 

• Trade-off Analysis13 

• Initial Performance 

Analysis (Prototypes) 

• Risk Analysis14 

• Project Analysis 

 

Mission  

Assurance 
• Component 

• System 

• Multiple 

Systems 

• System of 

Systems 

 

• Current 

• Near-term (1 

year) 

High 

Medium 

 

• Verification 

• Validation 

• Accreditation 

• Certification 

• Integration15 

 

Operations and 

Support 
• Single System 

• Multiple 

Systems 

• System of 

Systems 

 

• Current 

• Near-term (1 

year) 

 

High 

Medium 

 

• Performance Analysis 

(Actual) 

• Risk Analysis 

 

 
11 Performance Analysis use use simulations to analyze system performance, including response times, throughput, 

and resource utilization, helping to identify bottlenecks and optimize performance. 
12 Requirements Analysis use simulations to validate and refine system requirements by modeling different scenarios 

and assessing how well the system meets its intended functions. 
13 During the detailed design phase, simulations are used to explore different design alternatives, optimize system 

performance, and identify potential issues early in the development process. 
14 Risk analysis use static and simulation models help assess risks by modeling potential failure modes and their 

impacts, enabling engineers to develop mitigation strategies. 
15 Integration and testing use simulation models to plan and evaluate the integration of system components by testing 

interactions and dependencies in a virtual environment before physical integration. 
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Due to limitation in modeling-languages and architecture frameworks, MBSE has been relegated 

to the early phases – conceptual and preliminary system design - of the systems engineering 

lifecycle.  To be truly respected, MBSE must be expanded to include the entire lifecycle to include 

test and evaluation and operations and sustainment.  Live, virtual, and constructive (LVC) offers 

an untapped potential for expanding MBSE to realize a virtual representation to explore the SoI 

that have not been previously possible.   Table 9 shows the assessment and forecast of model-

based processes to the MBSE effectiveness measures. 

Table 9.  Model-Based Processes Assessment and Forecast. 

Effectiveness Measure Model-Based Processes  

 

Expressiveness 

MBSE process allows for the expression of multiple concepts to include at a 

minimum capabilities, functional, system , standards, and programmatic data.   

Heretofore, the MBSE practices have been relatively silent on mathematically-

based processes, except for the most basic problems.   

 

Precise 

MBSE process allows for system data to be represented in unambiguously at 

various levels of fidelity and decomposition, and from various viewpoints.    

 

Presentation/ 

Communication 

The generic MBSE processes allows for the data to be presented in various 

viewpoints to meet stakeholders needs.  However, to be able represent the data 

accurately and efficiently, the planning, collection, storage, correlation, and the 

engineering analysis of data is essential.   

Model Construction/ 

Manageability 

A well defined CDM will allow for effective model construction, and will yield 

reusable models, and repeatable analysis results. 

Interoperable/Logical 

Consistency 

Not Applicable 

Usable A well-define model-based on a CDM will allow for the effective model-based 

processes that will yield insights into the SoI that are not available with 

traditional systems engineering processes. 

Concordance/Referential 

Integrity 

Not Applicable 
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CHAPTER 6   

PRESENTATION FRAMEWORKS 
 

“The purpose of [model] is to support decision-making, and it must be data driven, not diagram 

driven.”  - Kevin Brett (2022) 

Presentation frameworks16 provide the logical structure to categorize and organize various system 

views into thematic viewpoints, that serves as a standard for a given set of stakeholders.   The 

“dirty little secret” of presentation frameworks is that they have no unique views of their own; 

every view is a standard system engineering diagram that is renamed for the framework.   

Presentation frameworks are developed by answering the architecture interrogatives of who, what, 

when, where, why, and how.  All presentation frameworks provide: definitions of standard views 

within the framework; guidance and rules for organizing viewpoints, structuring data, and systems 

engineering views; and, references to compare and contrast models when in the same format.  The 

frameworks enable decisions across the enterprise due to the commonality and familiarity with the 

standard viewpoints and views.  Complexity in the model-based ecosystem is significantly reduced 

by separating and characterizing systems issues into various viewpoints and views.   

The Zachman Enterprise Architecture Framework was the first logical structure for classifying and 

organizing system information to represent all stakeholders.  The Zachman Framework is 

organized by the architecture interrogatives - what (data), how (function), where (network), who 

(people), when (time), why (motivation)) compared against the stakeholder perspectives 

(executive perspective(planner), business management perspective (owner), architect perspective 

(designer), engineer perspective (builder), technician perspective (maintainer), operator 

perspective (user).  At the intersection of each architecture interrogative and stakeholder 

perspective is the defined view (Fig. 9) (Zachman, 1988; Zachman, n.d.). 

 
16 The term “presentation framework” is used in lieu of “architecture framework” because the views defined in 

architecture frameworks are focused on the early systems engineering activities, while the views in presentation 

frameworks are extended to include views throughout the system lifecycle.  The goal is to perform model-based system 

engineering and not model-based systems architecting. 
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Fig. 9. Intersection of Architecture Interrogatives and Stakeholder Perspectives. 

Architectural frameworks are usually established at an enterprise level, and not with individual 

programs.  The U.S, government uses several architectural frameworks, with one of the most 

common being the Department of Defense Architecture Framework (DoDAF), provides guidance 

for describing architectures for both DoD operations and business processes.   The framework 

provides the guidance, rules, and product data descriptions for developing and presenting 

architecture descriptions that ensure a common denominator for understanding, comparing, and 

integrating families of systems, systems of systems, and interoperating and interacting 

architectures (DoD CIO, 2009).   

DoDAF categorizes the SoI into eight viewpoints: capabilities; operations; systems; services; 

standards; project; data and information; and all viewpoints.  These eight viewpoints are further 

defined by 52 views (formerly called diagrams) to represent the SoI, thus allowing the system to 

be explored holistically, or from a single perspective.  The framework also has the flexibility to 

include other models, or “fit for purpose views,” that may be needed to address perspectives that 

are not included in the framework (DoD CIO, 2009).   The DoDAF viewpoints and views 

complement each other from a compressive virtual representation of the SoI.  Fig. 10 shows an 

example of interactions within a systems architecture (Vaneman and Carlson, 2018). 
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Fig. 10.  Example of Interactions within DoDAF (Vaneman and Carlson, 2018). 

While DoDAF is good for the defense related systems, it is not representative of other enterprises 

with the U.S. Government.  A popular non-defense architecture is the Federal Enterprise 

Architecture Framework (FEAF), whose purpose is to standardizes and streamline architecture 

development processes, reduce duplication, and increase the agility, flexibility, and effectiveness 

of primarily information technology systems.  NASA has the Space Mission Architectural 

Framework (SMAF) that represents the information required for the unique unmanned space 

missions.   A brief description of frameworks commonly used by the U.S. Government are shown 

in Table 10. 
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Table 10.   Summary of Frameworks used by the U.S. Government. 

Architectural 

Framework 
Brief Description 

Department 

of Defense 

Architecture 

Framework 

(DoDAF) 

DoDAF addresses the conceptual model enabling the development of architectures and provides 

guidance on the development of architectures supporting the adoption and execution of systems 

and services. DoDAF consists of eight viewpoints and 52 views.(DoD CIO, 2009). 

Federal 

Enterprise 

Architecture 

Framework 

(FEAF) 

FEAF was established to facilitate shared development of common processes and information 

among Federal Agencies and other government agencies.  FEAF is partitioned into: 

• Business Architecture – Addeess the architecture interogoratives of “what,” “when,” “ 

how,” “who,” and “why.”  It does not address “where” as the Zachman Framework does. 

• Data Architecture: Information used by the organization to conduct business and make 

admisitrative decisions. 

• Application Architecture -  System and service  applications that process the data according 

to defined business rules. 

• Technology Architecture -  Systems that supports the business, data, and application 

architectures.  (OMB, accessed April 5, 2024)  

NASA Space 

Mission 

Architecture 

Framework 

(SMAF) 

SMAF is a framework that represents uncrewed space missions. Viewpoints include: 

• Enterprise/Mission Concept Viewpoint – Models the top-level organizational perspective. 

• Mission Operation Viewpoint  - Models launch, ground, and flight operations. 

• Engineering Viewpoint – Models the technical activities and resulting products involved in 

formulation and implementation of the mission. This includes the technical solution view 

that model the conceptual and functional perspectives, and the product realization 

viewpoint that models the implementation of the functional architecture into a physical 

system. 

• Project Implementation  Viewpoint – Addresses the architecture from the perspective of 

overall project planning, management, and control. 

• Science Viewpoint – Models the science mission being conducted (NASA, 2021). 

Unified 

Architecture 

Framework 

(UAF) 

UAF defines ways of representing an enterprise architecture that enables stakeholders to 

Maintain a holistic perspective while focusing on detailed specific areas of interest.  UAF 

contains 75 views, and bridges the existing DoDAF, U.K.’s Ministry of Defence’s Architecture 

(MoDAF) and the NATO Architecture Framework (NAF) (OMG, 2020). 

 

 

The Unified Architecture Framework (UAF) has been developed as the next generation 

architecture framework for defense enterprises.  The UAF is not developed as a new architectural 

framework per se, but a way of bridging the differences between DoDAF, United Kingdom’s 

Ministry of Defense Architecture Framework (MODAF), and the NATO Architecture Framework 
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(NAF) so that these defense related frameworks are more compatible.  Given the cooperative 

system development, UAF is the first modeling standard to enjoy adoption from around the world 

(Hause, 2012). 

UAF defines ways of representing an enterprise architecture that enables stakeholders to focus on 

specific areas of interest in the enterprise while retaining sight of the big picture.  The scope of 

UAF 10 viewpoints (metadata. strategic, operational, services, personnel, resources, security, 

projects, standards, and actual resources), and extends DoDAF from 56 to 75 views.   Table 11a-

h shows a mapping between DoDAF, UAF, SysML, and LML views17 (DoD CIO, 2009; OMG, 

2019; OMG, 2020; LML, 2022). 

Table 11a.    Mapping Capability Views between DoDAF, UAF, SysML, and LML. 

DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

CV-1: Vision • St-Sr: Strategic Structure UML Use Case 

Diagram 

Asset Diagram 

CV-2: Capability 

Taxonomy 
• St-Tx:Strategic 

Taxonomy 

Activity Diagram Hierarchy Diagram 

CV-3: Capability Phasing • St-Rm:Strategic 

Roadmap: Phasing 

N/A Timeline Chart 

CV-4: Capability 

Dependencies 
• St-Cn:Strategic 

Connectivity 

N/A Matrix based on Actions 

and Assets 

CV-5: Capability to 

Organizational 

Development Mapping 

• St-Rm:Strategic Roadmap N/A Matrix based on Actions 

and Assets  

CV-6: Capability to 

Operational Activities 

Mapping 

• Op-Tr:Opreational 

Treceability 

 

N/A Matrix based on Actions  

CV-7: Capability to 

Services Mapping 
• Sv-Tr:Services 

Traceability 

• St-Tr:Strategic 

Traceability 

N/A Matrix based on Actions 

and Assets 

 

 

 
17 Table 10a-h do not address the UAF views for meta-data and security since a DoDAF correlation does not exist. 
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Table 11b.    Mapping Operational Views between DoDAF, UAF, SysML, and LML. 

 DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

OV-1: High Level 

Operational Concept 

Graphic 

• Op-Tx:Operational 

Taxomomy 

• Sm-Ov: Summary and 

Overview 

UML Use Case 

Diagram 

Asset Diagram 

OV-2: Operational 

Resource Flow 

Description 

• Op-Sr:Operational Structure 

• Op-Tx:Operational 

Taxonomy 

• Op-Cn:Operational 

Connectivity 

UML Class Diagram Asset Diagram 

OV-3: Operational 

Resource Flow Matrix 
• Op-Cn: Operational 

Conectivity 

N/A Matrix of Input/Outputs 

OV-4: Organizational 

Relationships Chart 
• Ar-Cn Actual Resources 

Connectivity 

• Rs-Sr: Actual Resources 

Structure 

• Pr-Cn:Personnel 

Connectivity 

• Pr-Ct:Personnel 

Constratints: Competence 

UML Class Diagram Asset Diagram 

OV-5a: Operational 

Activity Decomposition 

Tree 

• Op-Pr:Operational 

Processes 

• Pr-Sr:Pesonnel Structure 

• Pr-Tx:Personnel 

Taxonoomy 

UML Class Diagram Hierarchy Chart 

OV-5b: Operational 

Activity Model 
• Op-Pr:Operational 

Processes 

Activity Diagram IDEFD0 Diagram 

OV-5b/6c – Action 

Diagram (Fit-for-

purpose) 

• Op-Pr:Operational 

Processes 

• Op-Is:Operational 

Interacton Scenarios 

• Pj-Pr: Projects Processes 

N/A Action Diagram 

OV-6a: Operational 

Rules Model 
• Op-Ct:Operational 

Constraints 

N/A N/A 

OV-6b: State Transition 

Description 
• Op-St:Operational-States State-machine 

Diagram 

State-Machine Diagram 

OV-6c: Event-Trace 

Description 
• Op-Is:Operational 

Interaction Scenarios 

Sequence Diagram Sequence Diagram 
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Table 11c.    Mapping Systems Views between DoDAF, UAF, SysML, and LML. 

DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

SV-1 Systems Interface 

Description 
• Rs-Tx:Resources Taxonomy 

• Rs-Sr:Resources Structure 

• Ar-Cn: Actual Resource 

Connectivity 

Block Definition 

Diagram 

Asset Diagram 

SV-2 Systems Resource 

Flow Description 
• Rs-Sr:Resources Structure 

• Rs-Tx:Resource Taxonomy 

• Ar-Cn:Actual Resource 

Connectivity 

Internal Block 

Definition Diagram  

Asset Diagram 

SV-3 Systems-Systems 

Matrix 
• Rs-Cn:Resources 

Connectivity 

N/A Matrix based on 

Assets  

SV-4 Systems 

Functionality Description 
• Rs-Pr: Resource Processes 

• Pr-Pr: Personnel Processes 

Activity Diagram IDEF0 Diagram 

SV-5a Operational 

Activity to Systems 

Function Traceability 

Matrix 

• Pr-Tr:Personnel Tracability 

• Rs-Tr:Resources Traceability 

N/A Matrix based on 

Actions  

SV-5b Operational 

Activity to Systems 

Traceability Matrix 

• Pr-Tr:Personnel Traceability 

• Rs-Tr:Resources Traceability 

N/A Matrix based on 

Actions and Assets  

SV-6 Systems Resource 

Flow Matrix 
• Pr-Cn:Personnel 

Connectivity 

• Rs-Cn:Resources 

Connectivity 

N/A Matrix of 

Input/Outputs 

SV-7 Systems Measures 

Matrix 
• Pm-Me:Parameters 

Measurements 

• Pr-Ct:Personnel Constraints: 

Performance 

Parametrics Diagrams Matrix based on 

Measures and Assets 

SV-8 Systems Evolution 

Description 
• Rs-Rm:Resources Roadmap: 

Evolution 

State-machine 

Diagram 

Timeline Diagram 

SV-9 Systems Technology 

& Skills Forecast 
• Rs-Rm:Resources Roadmap: 

Forecast 

N/A Timeline Diagram 

SV-10a Systems Rules 

Model 
• Pr-Ct:Personnel Contrataints: 

Drivers 

• Rs-Ct:Resources Constraints 

N/A N/A 

SV-10b Systems State 

Transition Description 
• Rs-St:Resources States State-Machine 

Diagram 

State-Machine 

Diagram 

SV-10c Systems Event-

Trace Description 
• Rs-Is:Resources Interaction 

Scenarios 

Sequence Diagram Sequence Diagram 
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Table 11d.    Mapping Services Views between DoDAF, UAF, SysML, and LML. 

DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

SvcV-1 Services Context 

Description 
• Rs-Tx:Resource Taxonomy 

• Rs-Sr: Resource Structure 

• Ar-Cn: Actual Resource Connectivity 

• Sv-Sr:Services Structure 

• Services Taxonomy 

Block Definition 

Diagram 

Asset Diagram 

SvcV-2 Services Resource 

Flow Description 
• Rs-Sr: Resource Structure 

• Rs-Tx:Resource Taxonomy 

• Ar-Cn:Actual Resource Connectivity 

• Sv-Sr:Services Structure 

Internal Block 

Definition 

Diagram  

Asset Diagram 

SvcV-3a Systems-Services 

Matrix 
• Sv-Cn:Services Connectivity N/A Matrix based on 

Assets 

SvcV-3b Services-Services 

Matrix 
• Sv-Cn:Services Connectivity Activity Diagram IDEF0 Diagram 

SvcV-4 Services 

Functionality Description 
• Rs-Pr: Resource Processes 

• Pr-Pr: Personnel Processes 

• Sv-:Services Processes 

N/A Matrix based on 

Actions  

SvcV-5 Operational 

Activity to Services 

Traceability Matrix 

• Sv-Tr:Services Traceability N/A Matrix based on 

Action and 

Asset  

SvcV-6 Services Resource 

Flow Matrix 
• Sv-Cn:Services Connectivity N/A Matrix based on 

Input/Outputs 

SvcV-7 Services Measures 

Matrix 
• Pm-Me:Parameters Measurements Parametrics 

Diagram 

Matrix based on 

Measures and 

Assets 

SvcV-8 Services Evolution 

Description 
• Pr-Rm:Personnel Roadmap: Evolution 

• Sv-Rm:Services Roadmap: Evolution 

State-machine 

Diagram 

Timeline 

Diagram 

SvcV-9 Services 

Technology & Skills 

Forecast 

• Pr-Rm:Personnel Roadmap: Forecast 

• Sv-Rm:Services Roadmap: Forecast 

N/A Timeline 

Diagram 

SvcV-10a Services Rules 

Model 
• Sv-Ct:Services Constraints N/A N/A 

SvcV-10b Services State 

Transition Description 
• Sv-St:Services States State-Machine 

Diagram 

State-Machine 

Diagram 

SvcV-10c Services Event-

Trace Description 
• Pr-Is:Personnel Interaction Scenarios 

• Sv-Is:Services Sequences 

Sequence 

Diagram 

Sequence 

Diagram 
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Table 11e.    Mapping All Views between DoDAF, UAF, SysML, and LML. 

DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

All Viewpoint 

AV-1: Overview and 

Summary Information 
• Sm-Ov: Summary and 

Overview 

N/A Statements 

AV-2: Integrated 

Dictionary 
• Dc: Dictionary N/A Statements 

 

Table 11f.    Mapping Project Views between DoDAF, UAF, SysML, and LML. 

DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

PV-1: Project Portfolio 

Relationships 
• Pl-St:Project Structure N/A Matrix based on Time 

and Assets 

PV-2: Project Timelines • Pr-Rm:Personnel 

Roadmap: Availabiliy 

• Pj-Cn:Projects 

Connectivity 

• Pj-Rm: Projects Roadmap 

N/A Timeline Chart 

PV-3: Project to Capability 

Mapping 
• Pj-Tr: Projects Tracability N/A Matrix based on Time 

and Actions 

 
 
Table 11g.    Mapping Data and Information Views between DoDAF, UAF, SysML, and LML. 

DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

DIV-1:Conceptual Data 

Model 
• If: Information UML Class Diagram, 

Block Definition 

Diagram 

Actions, Assets, and 

Inputs/Outputs 

DIV-2: Logical Data 

Model 
• If: Information UML Class Diagram, 

Block Definition 

Diagram 

Actions, Assets, and 

Inputs/Outputs 

DIV-3: Physical Data 

Model 
• If: Information UML Class Diagram, 

Block Definition 

Diagram 

Actions, Assets, and 

Inputs/Outputs 
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Table 11h.    Mapping Standards Views between DoDAF, UAF, SysML, and LML. 

DoDAF View UAF View UML/SysML 

Diagram 

LML Model 

StdV-1 Standards Profile Sd-Tr: Standards Traceability N/A Statements 

StdV-2 Standards Forecast Sd-Rm: Standards Roadmap N/A Timeline Chart 

 

Architecture frameworks should be extended into presentation frameworks to include data that is 

relevant across the system lifecycle.  The goal is to implement MBSE, which is greater than 

“model-based system architecting,” therefore, new viewpoints and views need to be defined to 

represent the full systems engineering lifecycle.  Table 12 suggests new viewpoints and views to 

be included in a presentation framework.  Table 13 shows the assessment and forecast of 

presentation frameworks to the MBSE effectiveness measures.   
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Table 12.  Suggested Viewpoints and Views for the Presentation Framework. 

Viewpoint Views 

Detailed Design • Computer Aided Design (CAD) 

• Computer Aided-Engineering (CAE) 

Maintainability Analysis • Modularity Diagrams 

• Dependency Graphs 

• Action/Activity Diagram 

• Matrix 

Performance Analysis • Scenario Analysis 

• Simulations 

• Flow Chart 

• Bar Charts 

• Pie Charts 

• Dashboards 

• Matrix 

Prototypes • Mock-ups 

• Interactive Prototypes 

• “Non-qualified” components 

Reliability Analysis • Fault Tree Analysis (FTA) Diagram 

• Reliability Block Diagrams 

• Event Tree Analysis (ETA) 

• Pareto Charts 

• Matrix 

Requirements Analysis • SysML Requirements Diagram 

• Hierarchy Chart 

• Sequence Diagrams 

• System Context Diagrams 

• Process Maps and Flowcharts 

• Functional Decompososition Diagrams 

Risk Analysis • Risk Matrix 

• Fault Tree Analysis (FTA) Diagram 

• Event Tree Analysis (ETA) 

• Scenario Analysis 

Training • Interactive Simulations 

• Storyboards 

• Mind Maps 

Verification and Validation (Testing) • Test Execution Dashboards 

• Error Tracking Charts 

• Dependency Graphs 

• Performance Monitoring Charts 
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Table 13.  Presentation Frameworks Assessment and Forecast. 

Effectiveness 

Measure 
Presentation Framework 

Expressiveness 

Presentation frameworks provide the definitions, references, guidance and rules for 

structuring, classifying, and organizing architectures.  Current frameworks focus on the 

early systems engineering phases.  Presentation frameworks should be extended to include 

data that is relevant across the system lifecycle (e.g. requirements, risk, test and evaluations, 

programmatic data).  

Precise 
Complexity in a model-based environment is significantly reduced by separating and 

characterizing systems issues into various data-driven viewpoints and views. 

Presentation/ 

Communication 

Presentation frameworks promote familiarity and allow it to be easier to compare and 

contrast models when in the same format.  However, after three decades of formal 

frameworks, wide-spread decision-making based on the models has not been realized.  The 

improvement of the presentation and communication of models based on the frameworks is 

not a technological issue, but a human issue where decision-makers must understand how 

the models can be used to make decisions.  

Model Construction/ 
Manageability 

Presentation frameworks establish standard views, descriptions, data structures, and generic 

approach to developing the models.  Since presentation frameworks are implemented in 

MBSE tools, the ease of model construction and manageability is tool dependent. 
Interoperable/ 

Logistical 

Consistency 

Interoperability and logical consistency of presentation frameworks is based on modeling 

languages and model structures; therefore, the presentation frameworks have the same 

characteristics. 

Usable 
The presentation frameworks establish standard views, descriptions, data structures, and a 

generic approach to developing the models.  This commonality fosters familiarity among 

all stakeholders. 

Concordance/ 
Referential Integrity 

When visualization models are derived from the data, concordance will likely result.  While 

visualization models within a viewpoint are related, visualization models from across the 

viewpoints is also defined.  These relationships exist because relationships exists within the 

data, thus ensuring concordance. 
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CHAPTER 7 

MODELING TOOLS SELECTION 
 

“All models are wrong; some models are useful.” – W. Edwards Deming 

Model-Based Systems Engineering tools are general purpose software applications that use 

modeling languages, and support the specifications, to generate, modify, and manage the system 

model and complex system representations therein.  The tools are represented in the center of the 

Venn diagram (Fig. 2) because each tool has different strengths and weaknesses with respect to 

the four MBSE components.  Each organization has a different program focus, the engineering 

staff has different modeling skills, and managers want to see the system data portrayed in a way 

that maximizes the decision-making process.  The “bottom-line” of MBSE tools is, “one size does 

not fit all.”  

The goal of the tool selection process is to explore the trade space (maximum effectiveness area 

in Fig. 2) that exists between the four MBSE components, using a multi-criteria approach. By 

evaluating these tools within this trade-space, organizations can understand which MBSE tool best 

meets their systems engineering needs. Fig. 11 shows the five-step process used in the tool 

selection process. 

 

Fig. 11.  Five Step Process used for MBSE Tool Study (Vaneman, et al., 2021). 
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The first step uses the four components of MBSE are further defined by deriving additional criteria 

that is specific to the organization.   This also defines a rubric for evaluation of the criteria.  The 

rubric served as a guide for the tool evaluation team while evaluating each tool and will be further 

discussed in Step 3.  The general scale for the rubric is:  

1 = Tool does not meet the criteria 

3 = Tool partially meets the criteria 

5 = Tool fully meets the criteria 

While each MBSE component will be further defined, and an associated rubric created for 

illustrative purposes on the analysis of the modeling process component will be shown.  Modeling 

processes provide the analytical framework to conduct the analysis of the system virtually defined 

in the model, throughout all phases of the systems engineering lifecycle. Tables 14a-b show the 

criteria and rubric defined for modeling processes focus on the types of models developed during 

the systems engineering and architecture process, and include the ability to model: 

• Operational architectures; 

• Physical architectures; 

• Architecture planning; 

• Program management; 

• System requirements; 

• Discrete event simulations; 

• Stochastic simulations; 

• System dynamics; 

• Verification & validation; 

• Entire system lifecycle to include all lifecycle disciplines. 

 

 

 

 

 

 

 

 



45 

 

Table 14a.  Model-Based Processes Criteria and Rubric. 

Criteria Rubric 

The MBSE tool can model the 

operational architecture (i.e. activity or 

action diagrams, IDEF0 diagrams, state 

transition diagram, etc.) 

1 = The MBSE tool cannot model operational architectures;  

5 = The MBSE tool can model operational architectures. 

The MBSE tool can model the systems 

architecture (i.e. block definition diagram, 

internal black definition diagram, asset 

diagram, network diagram, system-to-

system matrix, etc.). 

1 = The MBSE tool cannot model operational architectures;  

5 = The MBSE tool can model operational architectures. 

The MBSE tool can model the 

architecture modeling planning process 

(i.e. overview and summary information, 

data dictionary, conceptual data model, 

logical data model, physical data model, 

etc.) 

1 = The MBSE tool does not model any aspect of the architecture 

modeling planning process;  

3 = The MBSE tool partially models the architecture modeling planning 

process, but does not include all aspects (i.e. overview and summary 

information, data dictionary, conceptual data model, logical data model, 

physical data model, etc.); 

 5 = The MBSE tool fully models the architecture modeling planning 

process. 

The MBSE tool can model the program 

and project management processes (i.e. 

project schedule, cost profile, risk matrix, 

etc.). 

1 = The MBSE tool cannot model program and project management 

processes;  

5 = The MBSE tool can model program and project management 

processes. 

The MBSE tool can model and manage 

system requirements.  

1 = The MBSE tool does not model or manage system requirements;  

3 = The MBSE tool does model system requirements, but does not 

allow for those requirements to be managed within the tool (i.e. the 

system requirements can be captured and portrayed within the MBSE 

tool, but cannot manage requirements);  

5 = The MBSE tool models and manages requirements (i.e. managing 

requirements means that requirements can be managed within the 

MBSE tool, or has a direct, real-time, two-way interface with another 

tool that will manage requirements (e.g. DOORS)). 

The MBSE tool can numerically model 

and simulate deterministic (discrete 

event) simulations. 

1 = The MBSE tool cannot numerically model and simulate discrete 

event simulations;  

5 = The MBSE tool can numerically model and simulate discrete event 

simulations. 
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Table 14b.  Model-Based Processes Criteria and Rubric. 

Criteria Rubric 

The MBSE tool can numerically model 

and simulate stochastic simulations with 

multiple statistical distributions. 

1 = The MBSE tool cannot numerically model and simulate stochastic 

simulations;  

5 = The MBSE tool can numerically model and simulate stochastic 

event simulations. 

The MBSE tool can numerically model 

and simulate system dynamics 

simulations. 

1 = The MBSE tool cannot numerically model and simulate system 

dynamics simulations;  

5 = The MBSE tool can numerically model and simulate system 

dynamics simulations.  

The MBSE tool can model validation and 

verification processes. 

1 = The MBSE tool cannot model validation and verification processes;  

5 = The MBSE tool can model validation and verification processes. 

The MBSE tool models processes across 

the entire system lifecycle (to include all 

lifecycle disciplines). 

1 = The MBSE tool models processes for only a certain portion of the 

system lifecycle (e.g., architecture development phase);  

3 = The MBSE tool models the entire system lifecycle, but only from a 

systems engineering perspective (but not other lifecycle disciplines such 

as program and project management);  

5 = The MBSE tool models the entire system lifecycle (to include all 

lifecycle disciplines). 

 

Each criteria defined in Step 1 may have a different importance to different organizations. In the 

second step, the organization determines the weighted priority for criteria.    One method is to 

apply a “hundred-coin exercise” to determine the individual criteria within the components.  In a 

“hundred-coin exercise,” the organization is asked to evaluate each criteria as if they had a 

“hundred coins,” placing the corresponding “number of coins” against the importance of each 

criteria.  If there are multiple respondents, the results are averaged, with the result representing the 

importance of each criteria to the respondents collectively.  The modeling process criteria weights 

are shown in Fig. 12. 
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Fig.12. Modeling Process Weights (Vaneman, et al., 2021). 

 

Four modeling process criteria emerged as the most important to the organization. The most 

important criteria is that the MBSE tool can model and manage system requirements. The 

modeling processes places a high emphasis on the ability of the MBSE tool to model program and 

project management processes. Two additional processes that were significantly weighted and are 

also fundamental to systems engineering, are:  
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• The tool can model validation and verification processes. 

• The tool model the architecture modeling planning process (i.e. overview and summary 

information, data dictionary, conceptual data model, logical data model, physical data 

model, etc.). 

In the third step, the tool reviewers evaluate each candidate tool against the defined criteria using 

the rubric.   The candidate tools are assumed to have been qualified as being approved by the 

organization, with this evaluation selecting the best tool, from the approved tools, for the required 

modeling task. 

To maintain an unbiased tool evaluation, it is important that the tool reviewers don’t know the 

weights determined by the organization in Step 2, and that those determining the weights don’t 

know how each tool is being evaluated.  Fig. 13 shows the raw scores for the four candidate tools 

(each bar color represents a separate tool). 

All tools were evaluated satisfactorily against most of the criteria. One notable exception is all the 

tools scored poorly against the criteria, “The MBSE tool can numerically model and simulate 

system dynamics simulations.” This is not a major concern since systems dynamics modeling is 

not widely used in most program offices. While each tool developer likes to boast about their tool’s 

capabilities, no single tool does everything, and certainly not everything well. 



49 

 

 

Fig. 13. Model-Based Processes Raw Scores (Vaneman et al., 2022). 

 

The fourth step brings together the weighted criteria as defined by the organization and the tool 

evaluation. The weighted criteria defined in Step 2 multiplied by the tool evaluation scores in Step 

3. The purpose of this step is to identify which tool is best for a given criteria as defined by the 

organization. Since each organization is likely to have different weights to match their 

organizational needs, the weighted scores will better differentiate which tool best meets their 

needs.  Table 15 shows the modeling process weighted scores (Vaneman, et al., 2021). 

 



50 

 

Table 15. Modeling Processes Weighted Scores (Vaneman et al., 2022). 

 
 

The fifth step recognizes that each component may not be of equal importance to the users. As 

such, the “hundred-coin exercise” is repeated for the four MBSE components. In this example, 

each of the four components are equally weighted.  The overarching results are then compared 

using a radar chart (Fig. 14) as a visual representation to show the relative strengths of each tool 

with respect to the four MBSE components (Vaneman, et al., 2021). 
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Fig. 14. Overall MBSE Tool Analysis Results (equally weighted) (Vaneman et al., 2021). 

The criteria weightings were unique to the organization.  However, the criteria can be weighted by 

other organizations to derive what is important to them. One thing that is certain is different 

organizations will have different MBSE needs. If the criteria are accepted by another organization, 

the tool evaluation step is not necessary to redo if the same tools are being considered. The tool 

evaluation can be applied to the new organizations weights and re-evaluated in Steps 4 and 5. 
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Likewise, if the organization wants to evaluate other tools, the weighting will not have to be re-

done because they already know what is important to them. The new tool(s) can be independently 

evaluated, and then can be evaluated against Steps 4 and 5.
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CHAPTER 8 

EPILOGUE 

“Often the largest single cause of an enterprise failing to adopt or shift to a new 

paradigm is the inability or refusal to see beyond current patterns of thought, 

behavior, structures, rules and assumptions.”  – Kevin Brett (2022) 

 

Despite the almost two-decade emphasis placed on MBSE, the discipline has failed to keep pace 

with the ever-increasing complexities of systems.  Over-reliance on an extremely limited number 

of modeling languages and tools, the failure to address all lifecycle disciplines, and the focus on 

modeling mechanics instead of modeling the system, has resulted in many model-based activities 

being relegated to the beginning of the system’s lifecycle, thereby neglecting the holistic approach 

that is the cornerstone of the systems engineering discipline.   

The principles of MBSE are the foundation of model-based approaches SoI.  To further the 

modeling approaches, the concept of digital engineering is being pursued.  Digital engineering is 

an integrated digital approach that uses authoritative sources of system’s data to create an 

interconnected, federation of models that integrates engineering models, from various engineering 

domains, as a holistic representation of all relevant system perspectives, to design, develop, 

analyze, test, optimize, and manage complex systems throughout the system’s lifecycle.   

Three goals require the successful understanding and implementation of MBSE for digital 

engineering to be effective.  First, effective digital engineering requires formalized model 

development to establish the virtual representation of the SoI which was conceptually presented in 

Fig.1 (DASD, 2018).  This approach is significantly different than document-based engineering 

where each entity can be represented multiple times, there is no concordance between entities, and 

emergent behavior cannot be achieved.  Digital engineering is a paradigm shift and requires a 

mindset change in engineering processes and expectations of the artifacts required during the 

system’s lifecycle.  The failure to recognize this paradigm is one of the key inhibitors to effective 

digital engineering and MBSE implementation.  
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Second, the establishment of an authoritative source of truth (ASoT), which thoroughly qualifies 

the best models to represent a given aspect of the SoI (DASD, 2018).  If an ASOT is going to be 

effective each entity has a singular representation.  Multiple representations will further propagate 

the problems encountered in document-based engineering.  To achieve an ASoT, there must be an 

understanding of how the data in the models are vetted from an authoritative source and are 

properly verified, validated, and accredited (VV&A)18 to represent the SoI19.  The CDM is a good 

tool to understand how the models, representing different components, processes, or disciplines 

interact to form a cohesive, and correlated, data structure that depicts how data is shared within 

the ASoT. 

As digital engineering, and the ASoT evolves, technical approaches such as artificial intelligence, 

big data, and cloud and edge computing will have to be adopted and embraced to address 

scalability, data and model interoperability, and data management.       Fig. 15 is a conceptual 

diagram showing the various aspects of a future data-driven engineering ecosystem.  Notice that 

the human is central to this concept, representing the human-technology fusion that is essential to 

fully realizing the digital engineering paradigm shift. 

 

 
18 Verification, validation, and accreditation (VV&A) are three interrelated, but distinct processes used to ensure the 

credibility and reliability of models and simulations. Here's a brief overview of each ((AcqNotes, n.d.): 

- Verification: This process determines whether a model's implementation and its associated data accurately 

represent the developer’s conceptual description and specifications. Essentially, it's about checking if the model 

was built correctly. 

- Validation: This process assesses whether a model and its associated data provide an accurate representation of 

the real world from the perspective of the intended uses of the model. It's about ensuring the model behaves as 

expected in real-world scenarios. 

- Accreditation: This is the official certification that a model, simulation, or a federation of models, along with its 

associated data, is acceptable for use for a specific purpose. It confirms that the model meets the necessary 

standards and requirements. 

 
19 Verification and validation are well-known processes in modeling, simulation, and analysis, but are mostly absent 

in systems engineering.  If the data in the ASoT is going to be “authoritative,” the V&V processes must be 

established for systems engineering models individually and for federated models collectively.  
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Fig. 15. Data-Driven Engineering Concept. 

The third goal is to exchange and integration of models and data sources between disparate system 

lifecycle disciplines, modeling languages, tools, and presentation frameworks, while maintaining 

and storing its native format (DASD, 2018).  The focus on modeling artifacts, vice data, makes the 

exchange and integration of data impossible.   An often-ignored common denominator between 

the model-based engineering approaches is that data is the foundation of all models.  The 

translation and mapping of data represented by various modeling-languages and presentation 

frameworks is the foundation of sharing data.  Often, modeling languages and presentation 

frameworks are thought to be mutually exclusive with organizations failing to realize that each 

describes the SoI slightly differently with different syntax and semantics, yet they are describing 

the same thing.   

MBSE De-Mystified is more than an attempt to make sense of a topic that is more complex than 

recognized, but it is a call to actions that requires fundamental to realize the benefits of this exciting 

model-based renaissance.  



  

56 

 

REFERENCES 
 

AcqNotes n.d., The Defense Acquisition Encyclopedia. 

https://acqnotes.com/acqnote/tasks/verification-validation-and-accreditation (Accessed 

December 25, 2024) 

Bajaj, Manasm Sanford Friedenthal and Ed Seidewitz.   2022.  Systems Modeling Language 

(SysML v2) Support for Digital Engineering. INSIGHT March 2022 Volume 25 Issue 1.   

Booch, Grady. James Rumbaugh,, and Ivar Jacobson 2005. The Unified Modeling Language 

User Guide (2 ed.). Boston, MA: Addison-Wesley. 

Brett, Kevin. 2022. The Bionic Enterprise: Architecting the Intelligent Society of the Future.  

Stafford, VA: Blue Eagle Books. 

Dam, Steven H.  2015. DoD Architecture Framework 2.02: A Guide to Applying Systems 

Engineering to Develop Integrated, Executable Architectures.  Manassas, VA: SPEC 

Innovations  

Dam, Steven H.  2019. Real MBSE.  Manassas, VA: SPEC Innovations 

Department of Defense Chief information Officer.  2009.  DoD Architecture Framework Version 

2.0.  Washington, D.C.  Department of Defense Chief Information Officer. 

Friedentahl, Sanford and Roger Burkhart.  2015.  Evolving SysML and the System Modeling 

Environment to Support MBSE.  INSIGHT, v18, n2, pp. 39-41. 

Friedentahl, Sanford. Alan Moore, and Rick Steiner 2015. A Practical Guide to SysML.  Boston: 

MA: Morgan Kaufmann. 

Hause, Matthew. 2012.  UAF – Unified Profile for DoDAF/MODAF.  Unpublished presentation. 

International Council on Systems Engineering (INCOSE).  2007.  Systems Engineering Vision 

2020.   

Lifecycle Modeling Language Steering Committee. 2022.  Lifecycle Modeling Language (LML) 

Specification. Document URL: http://www.lifecyclemodeling.org/spec/1.4.  

Lifecycle Modeling Language Steering Committee. 2025 (pending).  Lifecycle Modeling 

Language (LML) 2.0. 

Long, David and Zane Scott.  2011.  A Primer for Model-based Systems Engineering (2nd 

Edition).  Blacksburg, VA: Vitech Corporation. 



57 

 

National Aeronautical and Space Administration, 2021. NASA Space Mission Architecture 

Framework (SMAF) Handbook for Uncrewed Space Missions.  NASA-HDBK-1005. 

Office of Management and Budget n.d., Federal Enterprise Architecture (FEA).  

https://obamawhitehouse.archives.gov/omb/e-gov/fea (Accessed April 5, 2024) 

Object Management Group (OMG).  2012.  OMG Systems Modeling Language (OMG SysML).  

www.omg.org/spec.SysML /20120401’SysML.xm1. 

Object Management Group (OMG), 2019.  Unified Architecture Framework Traceability 

Version 1.1. 

Object Management Group (OMG), 2020.  Unified Architecture Framework Version 1.1. 

Object Management Group (OMG).   2014.  OMG Unified Modeling Language (OMG UML).  

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF. 

Object Management Group (OMG).   2023.. Kernel Modeling Language.  

https://www.omg.org/spec/KerML/1.0/Beta1/About-KerML 

Office of the Deputy Assistant Secretary of Defense for Systems Engineering (DASD SE). 2018, 

June.  “Department of Defense Digital Engineering Strategy.” Department of Defense. 

SEBoK. n.d. Complexity.  https://sebokwiki.org/wiki/Complexity (accessed December 4, 2024). 

Vaneman, Warren K.  2016.  Enhancing Model-Based Systems Engineering with the Lifecycle 

Modeling Language.  Orlando, FL:  Proceedings of the10th Annual IEEE Systems 

Conference.  

Vaneman, Warren K.  2018.  Evolving Model-Based Systems Engineering Ontologies and 

Structures.  Washington, D.C.:  Proceedings of the29th Annual INCOSE International 

Symposium. 

Vaneman, Warren K. and Ronald Carlson. 2018.  Managing Complex Systems Engineering and 

Acquisition Through Lead Systems Integration.  Monterey, CA: Naval Postgraduate 

School.  NPS-AM-19-008. 

Vaneman, Warren K., Ronald R. Carlson, and Gary W. Parker. 2021. Model Based Systems 

Engineering Tool Study Report.  Monterey, CA: Naval Postgraduate School.  

Unpublished technical report. 

Vaneman, Warren K., Steven Dam, and Jerry Sellers. 2019.  Essential LML: a Thinking Tool for 

Capturing, Connecting and Communicating Complex Systems. 

Vaneman, Warren K., Corina White, Ronald r. Carlson, Christopher Wolfgeher, Christopher 

Ritter, Geraldo Rodriguez Melo, Henry Sulca. 2023.  Implementing A Model-Based 

https://obamawhitehouse.archives.gov/omb/e-gov/fea
http://www.omg.org/spec.SysML%20/20120401'SysML.xm1
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
https://www.omg.org/spec/KerML/1.0/Beta1/About-KerML


58 

 

Systems Engineering Land Construct for the Marine Corps.  Monterey, CA: Naval 

Postgraduate School.  NPS-SE-23-004. 

Wikipedia n.d .  Booch Method.  https://en.wikipedia.org/wiki/Booch_method  Accessed March 

28, 2024) 

Zachman, John A. 2008. The Concise definition of the Zachman Framework. Zachman 

International, Inc.  https://www.zachman.com/about-the-zachman-framework. (Accessed 

Feb 28, 2019) 

Zachman, John A. n.d. About the Zachman Framework. Zachman International, Inc.  

https://www.zachman.com/about-the-zachman-framework. (Accessed Aug 14, 2023)

https://www.zachman.com/about-the-zachman-framework
https://www.zachman.com/about-the-zachman-framework


  

59 

 

MEET THE AUTHOR 
 

Dr. Warren Vaneman is an Expert Systems Engineering Professional, certified by the International 

Council on Systems Engineering (INCOSE), who serves as Professor of Practice in the Systems 

Engineering Department at the Naval Postgraduate School, Monterey, CA, since 2012, and as an 

Adjunct Professor at Virginia Tech, Blacksburg, VA, since 2007.   He has four decades of leadership 

and technical positions within the U.S. Navy and the Intelligence Community. Dr. Vaneman conducts 

research and teaches courses in systems engineering, Model-Based Systems Engineering (MBSE), 

Systems Architecting, and Systems of Systems Engineering and Integration. Prior to joining NPS, Dr. 

Vaneman held various systems engineering positions within the Intelligence Community, including 

Chief, Architecture Analysis Division, and Chief Architect of the Enterprise Ground Architecture at 

the National Reconnaissance Office (NRO), and Lead Systems Engineer for Modeling and Simulation 

at the National-Geospatial Intelligence Agency (NGA).  

Dr. Vaneman is also a Retired Navy Reserve Captain, where he qualified as a Surface Warfare Officer, 

Information Dominance Warfare Officer, and Space Cadre Expert. He served as the navigator of a 

guided missile cruiser during Desert Storm,  NRO Liaison to U.S. Pacific Command,  Flag Advisor 

for Systems and Space Engineering for the Space and Naval Warfare Systems Command Chief 

Engineer, and had the honor of six command tours, including a command tour in Afghanistan during 

Operation Enduring Freedom, and as the Commanding Officer, and Deputy Director for Intelligence 

at U.S. Fleet Forces Command.   

Dr. Vaneman has a B.S. in Meteorology and Oceanography from the State University of New York 

Maritime College, an M.S. in Systems Engineering and a Ph.D. in Industrial and Systems Engineering 

from Virginia Tech, and a Joint Professional Military Education Phase 1 Certificate from the Naval 

War College. He is the recipient of several engineering and academic awards and honors including the 

Virginia Tech Outstanding Dissertation Award (2003) and induction into the Virginia Tech Industrial 

and Systems Engineering Department’s Academy of Distinguished Alumni (2019).  Dr. Vaneman is a 

proudly decorated Naval Officer with 15 personal awards including two Legions of Merit.  


