

i

Copyright 2025 Warren K. Vaneman

ii

PREFACE

Model-Based Systems Engineering (MBSE) is a mysterious concept that means many

things to many different people. It was envisioned to manage the increasing complexity

within systems and System of Systems (SoS). This monograph defines MBSE as the

formalized application of modeling (static and dynamic) to support system design and

analysis, throughout all phases of the system lifecycle, and through the collection of

modeling languages, structures, model-based processes, and presentation frameworks

used to support the discipline of systems engineering in a model-based or model-driven

context.

Despite the almost two-decade emphasis on MBSE adoption and implementation, there

are still misperceptions which prevent MBSE from achieving its full potential. This

monograph seeks to “de-mystify” MBSE by exploring its definition, the application of

modeling-languages, model structure, model-based processes, and presentation

frameworks, and the roll of MBSE tools. Understanding MBSE is fundamental to

advancing the system engineering and program management disciplines into a future

environment where complexity is going to need to be controlled to field effective systems.

This monograph treats MBSE from a high-level, agnostic perspective with respect to

modeling languages, mode structure, modeling processes, presentation frameworks, and

modeling tools perspective. This document is not designed to supplant any books MBSE,

but to seeks to look at MBSE from a holistic perspective. The organization of this

monograph is shown below.

• Chapter 1 – Introduction. Provides the background for MBSE.

• Chapter 2 – The Essence of MBSE. Suggests a revised definition for MBSE and

the background on the systems thinking approach where the model is a virtual

representation of the system.

• Chapter 3 – Modeling Languages. Addresses the role of modeling languages in

MBSE. While two modeling languages (Systems Modeling (SysML) and

Lifecycle Modeling Language (LML)) are briefly discussed.

iii

• Chapter 4 – Model Structure. Model structure is a topic that is rarely discussed

but is an important topic if the model is going to be a virtual representation of the

system.

• Chapter 5 – Modeling Processes. Modeling of systems engineering processes is

often restricted to those early architectural and analysis issues. This chapter

examines additional modeling considerations across the system’s lifecycle.

• Chapter 6 – Presentation Frameworks. Architecture frameworks have existed

since the Zachman Framework was introduced almost 40 years ago. However,

these frameworks only show architectural data. This chapter discusses why the

current architectural frameworks need to be expanded to include visualization

across the systems lifecycle.

• Chapter 7 – Modeling Tools Selection. “Modeling tool wars” have existed since

long before MBSE was popularized. Often the winner of the tool wars is the

“political” favorite, and not the best solution for the issues that need to me

modeling. This chapter provides a “non-political” process for evaluating and

selecting tools based on the needs of the of the problem being modeled.

• Chapter 8 – Epilogue. Provides some concluding thoughts on MBSE to include

the evolution of MBSE to digital engineering.

Hopefully, this monograph will provide new insights that will allow for the advancement of

MBSE for systems-based disciplines.

Warren K. Vaneman

Sebastian, FL

January 1st, 2025

1

CHAPTER 1

INTRODUCTION

“Advancements in computing, modeling, data management, and analytical

capabilities offer great opportunities for engineering practice. Applying these tools

and methods, we are shifting toward a dynamic digital engineering ecosystem.

This digital engineering transformation is necessary to meet new threats, maintain

overmatch, and leverage technology advancements.” -

Kristin Baldwin (2018)

Models1 have been used in engineering since ancient times to communicate with stakeholders, and

to gain insights to increases confidence in the design and reduce risk and costs. The earliest

models were physical models that included scale models and prototypes to visualize and validate

design concepts prior to full-scale production. Mathematical models emerged to describe a

system’s behavior and predict outcomes using mathematical equations and relationships. This led

to simulation models that allowed systems to be evaluated through a time sequence. More recently

digital models have emerged for domain-specific models using Computer Aided Design (CAD),

and visualization models such as 3D and virtual reality models.

Systems engineering has always been a discipline based on models. In the early days, those

systems engineering models took the form of diagrams, documents, and spreadsheets. For almost

two decades, the systems engineering has been undergoing a renaissance to transform from a

document-based to a model-based approach since the International Council on Systems

Engineering (INCOSE) defined and popularized the term “Model-Based Systems Engineering”

(MBSE) in 2007 (INCOSE 2007). This sea-change was prompted by a need to address the

increasing system complexity2 where the models can appropriately be tailored to changing

conditions and program needs, re-used, and observed from both static and dynamic perspectives.

1 A model is an abstraction of a system, aimed at understanding, communicating, explaining, and designing aspects

of the system of interest (SoI).
2 System complexity refers to the degree of difficulty in understanding, predicting, or managing the behavior of a

system due to the interactions and interdependencies among its components. This complexity arises from several

factors:

- Number of Components - Systems with many parts or elements tend to be more complex.

- Interactions - The ways in which these parts interact can add layers of complexity, especially if the interactions

are non-linear or dynamic.

2

This MBSE transformation means more than using model-based tools3 and processes to create

hard-copy text-based documents, drawings, and diagrams. Data in a MBSE ecosystem is ideally

maintained within a single repository and has a singular definition for any model element and

allows for the static and dynamic representations of a system from several different perspectives

and levels of decomposition.

The enduring challenge for program management, engineering, and acquisition is how to deal with

this increased systems complexity, while ensuring a comprehensive and high-quality design.

Model-Based Systems Engineering will modernize systems engineering to better support the

delivery of capability to meet mission needs, and have the following objectives:

• Increased schedule efficiency and cost saving;

• Improved insights and understanding of complexity within the system;

• Better requirements development and management;

• Encourages re-use within and among models;

• Facilitates more informed decision-making;

• Improved collaboration and communication among stakeholder groups;

• Rapid development of systems and insertion of new technology;

• Increased understanding of system, and system of systems, interoperability.

- Emergence - Complex systems often exhibit emergent properties, where the whole system behaves in ways that

are not predictable from the behavior of individual parts.

- Adaptability - Systems that can adapt or evolve in response to changes in their environment add another layer of

complexity.

- Uncertainty- The presence of uncertainty or randomness in the system's behavior can make it more complex to

analyze and predict (SEBoK, n.d.).

3 A model-based tool is a software application or system used to develop models that represent, design, analyze,

and manage complex systems. These tools serve as the primary means of information exchange throughout the

system's lifecycle and helps visualize and simulate various aspects of a system, such as its requirements, behavior,

and structure, making it easier to understand and manage complex interactions and dependencies.

3

CHAPTER 2

THE ESSENCE OF MBSE

“MBSE is fundamentally a thought process. It provides the framework to allow the systems

engineering team to be effective and consistent right from the start of any project. At the same

time, it is flexible enough to allow the ‘thought’ process to adapt to special constraints of

circumstances present in the problem.” – David Long and Zane Scott (2011)

The fundamental objective of systems engineering is to facilitate a process that consistently leads

to the development of successful systems. A system is an integrated set of elements, designed to

function together to achieve some defined objective. The key words of this definition are:

• Integrated – A series of system elements that when combined work as one;

• Design – The deliberate planning and arranging of system elements;

• Function – The way in which the integrated system elements work together through rules

and procedures that were established during the design;

• Objective – The purpose, or goal, the system was designed to satisfy.

It is clear from this definition that the system is more than the physical components but includes

all aspects4 of the system of interest (SoI). As sub-systems are added to systems, and systems are

4 A system can be understood through several key aspects, each contributing to its overall functionality and

behavior:

- Components - These are the individual parts or elements that make up the system. Each component has a

specific role and function within the system.

- Interactions - The ways in which the components of a system interact with each other. These interactions can be

physical, informational, or functional.

- Boundaries - The limits that define what is inside and outside the system. Boundaries help to distinguish the

system from its environment.

- Environment - Everything outside the system's boundaries that can affect or be affected by the system. The

environment provides inputs to the system and receives outputs from it.

- Inputs and Outputs - Inputs are resources, information, or energy that enter the system, while outputs are the

results or products that leave the system.

- Processes - The activities or operations that transform inputs into outputs. Processes are the mechanisms

through which the system achieves its goals.

4

added to System of Systems (SoS), interfaces grow nonlinearly. Interfaces and interactions are

often difficult to comprehend, with a cascading effect leading to an uncertain and incomplete

architecture that fails to account for emergence within the system. As a result, complexity has

emerged as an enduring, and most significant, challenge of systems engineering.

To address the “complexity” challenge, systems engineering is adopting a model-based approach.

The system model serves as a virtual representation of SoI through a set of entities and

relationships that represent the system’s elements, functions, objectives, and every other aspect of

the system. Ideally, each entity is represented in the model as many times it is represented as an

element in the actual system – only once. To illustrate this concept the “dimensions” of a system

project must be considered. Assume that the cube in Fig. 1 (Vaneman et al., 2019) is a SoI. The

system has “width” that provides insight across the entire system lifecycle from the definition of

need to system disposal. The system has “height” which provides for the decomposition from the

holistic view of the system at the highest level to the components, and eventually the parts, at the

lowest levels. The system also has “depth,” which includes the complex relationships between

systems, functions, requirements, analysis, risk, costs, schedule, etc. (Vaneman, 2016).

- Feedback - Information about the system's performance that is used to make adjustments and improvements.

Feedback can be positive (reinforcing) or negative (corrective).

- Goals and Objective- The purposes or desired outcomes that the system is designed to achieve. Goals guide the

system's operations and development.

- Structure- The arrangement and organization of components within the system. Structure determines how

components are connected and interact.

- Emergent Properties - Characteristics of the system that arise from the interactions of its components, which

cannot be predicted by examining the components individually

5

Figure 1: Dimensions of a Systems Engineering Project (Vaneman, et al., 2019)

Model-Based Systems Engineering was envisioned to transform systems engineering’s reliance on

document-based work products to engineering environment based on models. INCOSE (2007)

defines MBSE as “the formalized application of modeling to support system requirements, design,

analysis, verification and validation, beginning in the conceptual design phase and continuing

throughout development and later life cycle phases.” While this definition captures the lifecycle

perspective, it does not give any indication how MBSE is different than traditional systems

engineering given that “models” have always been a cornerstone of the systems engineering

discipline.

An enhanced, and more sufficient, definition of MBSE is “the formalized application of modeling

(static and dynamic) to support system design and analysis, throughout all phases of the system

lifecycle, through the collection of modeling languages, structures, model-based processes, and

presentation frameworks used to support the discipline of systems engineering in a ‘model-based’

or ‘model-driven’ context” (Vaneman, 2016). The four components of MBSE are depicted in Fig.

2, and are defined as:

• Modeling Languages – Serves as the basis of tools, and enables the development of system

models. Modeling languages are based on a logical construct (visual representation) and/or

an ontology. An ontology is a collection of standardized, defined terms and concepts and

the relationships among the terms and concepts (Dam, 2019).

6

• Structure – Defines the relationships between the system’s entities. It is these structures

that allow for the emergence of system behaviors and performance characterizations within

the model.

• Model-Based Processes – Provides the analytical framework to conduct the analysis of

the system virtually defined in the model. The model-based processes may be traditional

systems engineering processes such as requirements management, risk management, or

analytical methods such as discrete event simulation, systems dynamics modeling, and

dynamic programming.

• Presentation Frameworks - Provides the framework for the logical constructs of the

system data in visualization models that are appropriate for the given stakeholders. These

visualization models take the form of traditional systems engineering models. These

individual models are often grouped into frameworks that provide the standard views5 and

descriptions of the models, and the standard data structure of architecture models.

Figure 2. Components of MBSE.

Maximum MBSE effectiveness occurs at the convergence of the four components, therefore

MBSE tools strive to not only be within this convergence, but to capitalize on various aspects to

5 A “view” is a representation of a related set of information using formats and representations of data in any

understandable format that conveys the meaning of the data.

7

give them a competitive market advantage. Model-Based Systems Engineering tools are general

purpose software products that use modeling languages, and support the specification, design,

analysis, validation, and verification of complex system representations. These tools serve as the

basis of the MBSE ecosystem.

In an MBSE ecosystem, each entity is represented as data, only once, with all necessary attributes

and relationships of that entity being portrayed. This data representation then allows for the entity

to be explored from the various engineering and programmatic viewpoints. A viewpoint describes

data drawn from one or more thematic perspectives and organized in a particular way useful to

management decision-making. The compilation of viewpoints (e.g. capability, operational,

system, programmatic viewpoints, etc.) represents the entire system, where the system can be

explored as a whole, or from a single perspective.

Systems have structures that consist of “building blocks” and their relationships to each other that

allows them to come together in a designed form that satisfies the desired system capabilities and

functionality. These structures are governed by the property of concordance. Concordance is the

ability to represent a single entity, such that data in one view, or level of abstraction, matches the

data in another view, or level of abstraction, when talking about the exact same thing. This allows

for complexity to be managed more efficiently because each entity is ideally represented in the

model only once, essentially creating a virtual representation of the system in the model. Systems

engineering views are generated from the data (Vaneman, 2016).

Often the MBSE ecosystem is contained in a single tool with its own data repository. While

desirable, it may not be feasible due to the size and scope of the SoI model. Regardless, if the

ecosystem is a single tool and data repository, or is composed of multiple tools, and possibly an

integrated data repository, the four components must be present and followed for the MBSE

ecosystem to be fully effective.

One of the challenges continually faced by program managers and chief engineers is defining the

value of MBSE. Many promises have been made about MBSE saving time and rework through

the efficient use of data, and early identification of issues that can be detected in the model versus

a physical prototype, but there are no suitable MBSE metrics that can be compared to traditional

systems engineering processes to determine if any of the claims made about MBSE are valid.

8

Table 1 identifies seven qualitative MBSE effectiveness measures (Friedenthal and Burkhart,

2015) that will be used to provide an assessment and forecast of the four components of MBSE.

Table 1. MBSE Effectiveness Measures and Definitions.

Effectiveness

Measure
Definition

Expressiveness The ability to express system concepts to include at a minimum capabilities, functional, system,

standards, and programmatic concepts.

Precise System representation is unambiguous and concise as needed at various levels of data

abstraction.
Presentation/
Communication

Ability to effectively communicate with diverse stakeholders. With standard systems

engineering and fit-for-purpose views, answering the questions who, what, when, where, why,

and how.

Model

Construction/
Manageability

Ability to efficiently and intuitively construct and manage models, to include normal model

construction and model extensions for special or domain-specific concepts and terminology.

Interoperable/
Logical Consistency

Ability to exchange and transform data with other models and structured data to include various

numeric and non-numeric analysis tasks.

Usable The ability for stakeholders to efficiently and intuitively create, maintain, and use the model.

Concordance/
Referential Integrity

The ability to represent singularly entity data such that data in one view, or level of abstraction,

matches the data in another view, or level of abstraction, when talking about the exact same

thing.

9

CHAPTER 3

MODELING LANGUAGES

“Languages shapes the way we think and determines what we can think about.” - Unknown

Written and spoken languages use different words, syntax6, and semantics7 to describe the same

thing. Similarly, despite their differences modeling languages all describe the same thing – the

SoI. Modeling languages serve as the basis of tools and enable the development of system models.

These languages are based on a graphical representations and/or a data schema. While the

languages serve as the foundation for MBSE tool development, tool vendors often interpret the

languages to enable the best implementation for their tools. Thus, while a common language is

used, the MBSE tools can be very different. For example, MBSE tools that are based on SysML

support a common set of graphical models, but typically have unique data schemas (Vaneman,

2016).

The foundation of the MBSE ecosystem is the modeling languages that enable the tools. While

these languages have achieved prominence with the System Modeling Language (SysML) during

the past decade, the origins can be found in the Structured Analysis and Structure Design (SA/SD)

diagrammatic approach that was popular in the 1970s, and the Booch object-oriented software

development method in the mid-1990s. Both approaches represented the logical and structural

aspects of a SoI with a set of diagrams (Wikipedia, n.d.).

Following the spirt of SA/SD and the Booch object-oriented software approach, the Unified

Modeling Language (UML) was developed in the late 1990s as a general-purpose object-oriented

graphical modeling languages are intended to provide a standard representation of SoI, primarily

for software development (Booch, et al. 2005 p. 496). The UML contains 14 diagrams within

two pillars – structure and behavior diagrams. (OMG, 2014).

6 Syntax in written language is the way words into phrases, clauses, and sentences to create meaning and convey

impact.
7 Semantics in written language is the study of meaning and interpretation in words, symbols, and sentence structure.

10

Given the successes of UML, INCOSE and the Object Management Group (OMG) developed

SysML as an object-oriented, general-purpose graphical modeling language for specifying,

analyzing, designing, and verifying complex systems that may include hardware, software,

information, personnel, procedures, and facilities (Friedenthal, et al. 2015). As a profile of the

UML metamodel, SysML uses seven of the 14 diagrams (views) from UML, plus two new models

based on the needs of the systems engineering discipline. The nine views are categorized into four

“pillars” (viewpoints) (behavior, structure, requirements, and parametric), and support

requirements specification, analysis, design, validation, and verification, for systems that include

hardware, software, information, process, and people. The four SysML pillars, and their associated

views and descriptions are shown in Fig. 3-5 (OMG, 2012).

11

Package Diagram –

Describes how a system is

divided into logical groupings

by showing the dependencies

among the groupings.

Block Definition Diagram –

Depicts the principal parts of a

system as a series of blocks,

with interconnections to

represent the relationships.

Internal Block Diagram –

Describes the internal

structure of a system in terms

of component properties, and

the relationship of the

constituent parts.

Fig. 3. SysML Structure Pillar Views.

12

Use Case Diagram - Depicts the

system’s functionality in terms of actors,

dependencies between use cases, and use

case goals.

Activity Diagram – Describes the

inputs, outputs, and controls of the

system activities.

Sequence Diagram – visual

representation of how objects in a system

interact over time.

State Machine Diagram – Describes

the states and the state transitions of the

system.

Fig. 4. SysML Behavior Pillar Views.

13

Requirements

Diagram – Provides

a graphical

representation of

functional and non-

functional system

requirements.

Parametric

Diagram –

mathematical

equations by

modeling system

elements.

Fig. 5. SysML Requirements and Parametric Pillar.

SysML 2.0 is currently being introduced and being implemented in MBSE tools. Unlike SysML

1.0, SysML is not a profile of the UML metamodel. In addition to graphical representations,

SysML 2.0 includes a modeling language based on the Kernel Modeling Language (KerML)8

(OMG, 2023), and an application programming interface (API). KerML provides a textual

notation that allows for the expression to precisely represent a SoI, the elements, and the

environment. The API provides a standard set of exchange services that can interact with SysML

2.0 to exchange model data among tools (Bajaj, 2022). Fig. 6 is an example of a SysML 2.0

activity diagram and associated KerML code.

8 KerML is an application-independent modeling language with defined semantics for modeling SoI and includes a

general syntax for developing and structuring model relationships, annotations and namespaces (OMG, 2023).

14

Fig. 6. SysML 2.0 Activity Diagram and Associated Code.

The Lifecycle Modeling Language (LML) was introduced as an attempt to provide a simpler

language for planning, specifying, designing, analyzing, building, and maintaining modern

complex systems. The language takes the principles of MBSE beyond development and

production and into the conceptual, utilization, support and retirement stages. It provides a robust,

easy to understand ontology9 that allows you to model complex interrelationships between system

components and programmatic artifacts, as well as express system information using easy to

understand diagrams.

LML was designed to integrate all lifecycle disciplines, such as program management, systems

engineering, testing, deployment and maintenance, into a single framework. As a result, LML can

be used throughout the lifecycle. LML uses common, everyday language to define its modeling

elements such as entity, attribute, schedule, cost, and relationship. Its primary modeling constructs

are the box (which represents any part of the system that is necessary) and the directed arrow

9 An ontology is a collection of standardized, defined terms and relationships between the terms to capture the

information that describes the physical, functional, performance, and programmatic aspects of a system (LML Steering

Committee, 2022).

15

(which depicts a relationship between modeled elements such as “consists of,” “derived from,” or

“costs”) (LML Steering Committee, 2025 (pending)).

LML combines logical constructs with a corresponding ontology, thus expressing a wide range of

entity classes, relationships, and attributes to capture engineering and programmatic information

(Vaneman, 2016). The language uses a simplified ontology10 of 12 primary and eight secondary

entity classes to capture the system characteristics, relationships, and interactions. Table 2 shows

the LML entities and their definitions (LML Steering Committee, 2022).

10 Common ways of describing such ontologies is entity classes, relationship, and attribute (ERA). ERA is often

used to define database schemas. LML uses the ERA approach but extends it by adding attributes to relationships.

The extension reduces the number of relationships needed, just as attributes reduce the number of entities needed

(Lifecycle Modeling Language Steering Committee, 2025 (pending)).

16

Table 2. LML Entity Classes and Definitions.

Entity Class Definitions

Action An Action entity specifies the mechanism by which inputs are transformed into outputs.

Artifact
An Artifact entity specifies a document or other source of information that is referenced by or generated

in the knowledgebase.

Asset
An Asset entity specifies an object, person, or organization that performs Actions, such as a system,

sub-system, component, person, or element.

Resource

(Asset)

A Resource is a child entity of Asset that specifies a consumable or producible Asset

Port (Asset)

A Port entity is a child entity of Asset that represents an interaction point of a block, specifying the

input and output flow.

Port in included so the MBSE tools based-on LML can be SysML compliant.

Characteristic A Characteristic entity specifies properties of an entity.

Measure

(Characteristic)

A Measure specifies properties of measurement and measuring methodologies.

Connection A Connection entity specifies the means for relating Asset instances to each other.

Conduit

(Connection)

A Conduit is a child entity to Connection that provides a means for physically transporting

Input/Output entities between Asset entities. Conduits are constrained by the attributes of capability and

latency.

Logical

(Connection)

A Logical entity is a child entity to Connection that represents the abstraction of the relationship

between any two entities.

Cost
A Cost entity specifies the outlay of expenditure made to achieve an objective associated with another

entity.

Decision A Decision entity specifies a challenge and its resolution.

Input/Output
An Input/Output entity specifies the information, data, or object input to, trigger, or output from an

Action.

Location A Location entity specifies where an entity resides.

Physical

(Location)

A Physical entity is a child entity of Location that specifies the location on, above, or below the surface.

Orbital

(Location)

An Orbital entity is a child entity of Location that specifies a location along an orbit around a celestial

body.

Virtual

(Location)

A Virtual entity is a child entity of Location that specifies a location within cyber space or a physical

network.

Risk A Risk entity specifies the combined probability and consequence in achieving objectives

Statement
A Statement entity specifies text referenced by the knowledgebase and is usually contained in an

Artifact.

Requirement

(Statement)

A Requirement is a child entity to Statement that identifies a capability, characteristic, or quality factor

of a system that must exist for the system to have value and utility to the system or user

Time
A Time entity specifies a point or period when something occurs or during which an action, asset,

process, or condition exists or continues

Equation
An Equation entity specifies a mathematical or logical equation that can be used to describe a portion

of the model. Equation is included so the MBSE tools based-on LML can be SysML compliant.

17

A fundamental tenet of LML is that each entity class has at least one corresponding visualization.

The entities and their graphical models are represented in four areas: functional models; physical

models; documentation entities; and parametric and program entities. Many LML models are

equivalent to the familiar models that have been developed over time by UML, SysML, Business

Process Modeling Notation (BPMN), and other engineering disciplines such as electrical

engineering. These common visualizations should be as simple as possible to reduce the

complexity of the language and make it more understandable to stakeholders. Other visualizations

are encouraged to be used with LML as they aid in expressing information, which is the real goal

of any language visualizations (LML Steering Committee, 2025).

As written and spoken languages can be translated, so can modeling languages. The common

denominator among the modeling languages are the diagrams. (Vaneman, et al., 2023). Table 3

shows the translation between LML entities, related LML views, and SysML views (Vaneman,

2018).

18

Table 3. LML Entity Classes and Translation between LML to SysML.

Entity Class LML Graphical

Representations

SysML Graphical Representations

Action Action Diagram, Sequence

Diagram

Activity Diagram, Sequence Diagram,

Use Case Diagram

Artifact Photo, Diagram, etc.

Asset Asset Diagram Block Definition Diagram, Internal Block

Definition Diagram

Resource (Asset) Asset Diagram Block Definition Diagram, Internal Block

Definition Diagram, Package Diagram

Port (Asset) Asset Diagram Internal Block Definition Diagram

Characteristic State-Machine, Entity-

Relationship, and Class

Diagrams

State-Machine Diagram

Measure

(Characteristic)

Hierarchy, Spider, and Radar

Charts

Parametric Diagram

Connection Asset Diagram Block Definition Diagram, Internal Block

Definition Diagram

Conduit (Connection) Asset Diagram Internal Block Definition Diagram

Logical (Connection) Entity-Relationship Diagram Internal Block Definition Diagram

Cost Pie/Bar/Line Charts N/A

Decision Spider Diagram, Hierarchy

Diagram, Tree Diagram

Package Diagram

Input/Output State-Machine Diagram State-Machine Diagram

Location Map N/A

Physical (Location) Geographic Maps N/A

Orbital (Location) Orbital Charts N/A

Virtual (Location) Network Maps N/A

Risk Risk Matrix N/A

Statement Hierarchy Diagram,

Requirements

Requirements Diagram

Requirement

(Statement)

Hierarchy Diagram,

Requirements

Requirements Diagram

Time Gantt Chart, Timeline Diagram N/A

Modeling languages such as LML, UML, SysML, SysML 2.0 (in the future) support a the

specification, design, analysis, verification, and validation of complex SoI, there are other

languages that should be considered for addressing problems and processes through the system’s

lifecycle. These include languages used for numerical analysis – a class of problems often

overlooked by the systems engineering community. Table 4 shows a sampling of several popular

modeling languages for the modeling and analysis of systems.

19

Table 4. Popular Languages for the Modeling and Analysis of Systems.

Modeling Language Description

Architecture Analysis and

Design Language (AADL)

Language used for modeling and analyzing the architecture of embedded systems,

particularly in avionics and automotive industries. It helps in performance analysis and

ensures system reliability.

Business Process Model and

Notation (BPMN)

A graphical representation for specifying business processes in a business process model.

It provides a standard notation that is understandable by all business stakeholders,

including business analysts, technical developers, and business managers

Lifecycle Modeling Language

(LML)

An open-standard modeling language designed for systems engineering. It support the

entire system’s lifecycle. (LML Steering Committee, 2022).

MATrix LABoratory

(MATLAB)

A high-level programming language and numerical computing environment developed

by MathWorks. It is based-on matrix and array mathematics, which support matrix

algebra and numerical computations.

Modelica

An object-oriented language for modeling complex physical systems. It is used for

simulation and analysis in various engineering domains, including mechanical, electrical,

and control systems.

Simulink
A graphical programming environment for modeling, simulating, and analyzing

multidomain dynamical systems.

System Definition Language

(SDL)

A structured modeling language based on am Entity, Relationship, Attribute (ERA), to

model a system’s architecture. SDL is used within ViTech’s systems engineering tools.

System Modeling Language

(SysML)

A graphical systems engineering language to support the specification, design,

verification and validation of systems

System Modeling Language

(SysML) 2.0

The next-generation Systems Modeling Language, developed to improve the precision,

expressiveness, and usability of the original SysML (Systems Modeling Language). It

aims to enhance MBSE practices by addressing limitations and incorporating lessons

learned from SysML 1.0

Unified Modeling Language

(UML)

A general-purpose, graphical modeling language primarily used for software engineering

but also applicable to systems engineering

Modeling languages serve as the foundation for MBSE tool development, vendors often interpret

the languages to enable the best implementation for the goals of their tools. While a common

language is used, the differences in the implementation of tool data schema often limits the ability

to effectively exchange data. For example, MBSE tools that are based on SysML support a

common set of visual models, but typically have unique data schemas making exchanging data

between different tools difficult, if not impossible (Vaneman, 2016). Table 5 shows the assessment

and forecast of modeling languages to the MBSE effectiveness measures.

20

Table 5. Modeling Languages Assessment and Forecast.

Effectiveness

Measure
Modeling Languages

Expressiveness
Recent developments in modeling languages allow MBSE to be more expressive. However,

the strength of current modeling languages is for the early lifecycle phases. The languages

need to be expanded to be expressive of the full system lifecycle with data represented by

additional graphical representations.

Precise

Current languages are attempting to add precision, but these efforts are decentralized and

uncoordinated. LML has a parsimonious ERA language that provides a manageable set of

entities from which to develop models. KerML defines the syntax and semantics for SysML

2.0, which should add to precision. As modeling-languages are expanded to include the full

system lifecycle, an equal amount of precision needs to be added to each lifecycle phase.

Presentation/

Communication

Presentation frameworks don’t have any unique views, but renames and uses existing

systems engineering graphical representations. Therefore, the architecture frameworks

within MBSE tools are based on the modeling language that the tool is based on. As graphical

representations in modeling languages are expanded, the views in presentation frameworks

will also be expanded.

Model Construction/
Manageability

The ease of model construction is based on how tool vendors implement the modeling

languages. LML and SysML 2.0 now can develop models by two methods. Both languages

can develop the models graphically; LML can develop models from a data perspective;

models in SysML 2.0 can be generated via the code based KerML.

Interoperable/
Logistical

Consistency

Another major area for modeling language improvement is interoperability and logical

consistency. SysML 2.0 has an API that should make sharing data between models more

effective and efficient. However, exchanging models between different SysML 2.0 MBSE

tools has yet to be proven. LML allows for data to be exchanged via an xmi interface, which

works well between LML-based models, but not between other tools. While having multiple

modeling languages is desired for the health of MBSE, a common interface exchange needs

to be developed that will support existing and future modeling languages.
Usable The usability of modeling languages is dependent on how it is implemented in MBSE tools.
Concordance/
Referential Integrity

All modeling languages can make relationships between entities. These relationships allow

for concordance and emergent behavior.

21

CHAPTER 4

MODEL STRUCTURE

“Creativity is the power to connect the seemingly unconnected.”

– William Plomer

Structure is probably the least understood aspect of MBSE. Like “creativity” in the William

Plomer quote, model structure is the power to connect the seemingly unconnected. Systems consist

of “building blocks” and their relationships to each other that allow them to come together in a

designed form that satisfies the desired capabilities and functionality. Model structures establish

concordance and define the relationships between the system entities that allows for the emergence

of system behaviors and performance characterizations within the model. The conceptual data

model describes the elements, attributes, and relationships that can be made within the model.

MBSE implementations often do not apply model structures efficiently, thereby causing data to be

represented in the model more than once - which is tantamount to document-based artifacts. This

often results in data maintenance errors, leading to different representations of the same data in

different viewpoints, thereby failing to take advantage of a key benefit of MBSE.

All modeling languages have the ability to make relationships within the model. In graphical based

languages, such as SyML, a relationship path can be formed by selecting an entity and navigating

the relationship to another entity (Friedenthal, et al., 2015). For example, in SysML, a function in

an activity model can be allocated to a system entity in an internal block definition diagram (IBD).

A value is an IBD can be assigned to an equation in a parametric diagram to represent a system

measure. A value in a parametric diagram can verify a requirement in a requirements diagram.

And a requirement can be related to a system entity in the IBD to be satisfied.

An ERA-based modeling language represents structure by defining the relationships between

entities. The relationship between the 20 primary and secondary entities of LML use an economy

of relationships approach, which is assisted by the bi-directional nature of relationships to the

entities. Each entity has a one-to-many, or many-to-many, possible relationships within the matrix.

Thus, for 20 defined entities, the total possible combinations is not 202 or 400 combinations but

22

approaches 20! or 2.43 x 1018 combinations. This phenomenon allows the complexity of the SoI

to be modeled while having a manageable entity and relationship “vocabulary,” at the atomic level.

Fig. 7 shows an extraction of the LML relationship matrix (LML Steering Committee, 2022).

Fig. 7. Insert of the LML relationship matrix (LML Steering Committee, 2022).

It can be daunting to begin a modeling effort when there are 1018 possible combinations. The

relationships within the matrix should be used as a guide to create a conceptual data model (CDM)

that is specific to a SoI. A CDM is a mapping of acceptable entities and relationships within the

system. It serves as the “blueprint” for the planning and building of the system model. Engineers

would not consider building a complex system without a plan, so why should a complex system

model be developed without a CDM?

Fig. 8 represents a notional CDM of a SoI. The CDM has four viewpoints: policy and standards

viewpoint (shown in yellow); operational viewpoint (shown in orange); systems viewpoint (shown

23

in blue; and programmatic viewpoint (shown in green). Each viewpoint is composed of entities,

examples of entities in {}, and associated relationships, used to represent the virtual representation

of the SoI. Each data representing an element with the SoI should be modeled as many times as

it is represented in the SoI – only once. This modeling approach allows for concordance to be

achieved within the model.

The systems engineering process begins with the definition of need which is usually contained in

document that is defined by an Artifact. Artifacts {Policy, Guidance, Governance, Standard} are

inputs to the systems engineering process, which are not meant to be changed within the

development of the model. While the Artifact is the source of, the data can be parsed into

individual Statements {Need, Goal, Objective, Assumption} which provide the actional

background needed to develop the SoI.

The Requirements {Originating} are traced from the Statements and serve as the source of the

requirements that the SoI must support. Requirements {Originating} are traced to Action

{Capability}. A capability is a solution-neutral statement that states the SoI much achieve a

desired effect under specified conditions. Action {Capability} is related to Action {Activity} can

be further related to Action {Function}.

Fig. 8. Conceptual Data Model Example.

24

Activities and functions both represent specific actions to achieve the desired objective. The

difference is, an activity is associated with the operational steps that are taken, while functions

represent what the system is performing. Action {Capability, Activity, Function} generate/receive

Input/Output {Data, Information, Energy, Trigger} from an operational perspective.

Inputs/Outputs {Data, Information, Energy, Trigger} are transferred via Connections {Conduit,

Interface, Data Link, Pipe}. Connections connect Assets to other Assets. The difference between

Inputs/Outputs and Connections are, Inputs/Outputs represents the commodity that is being

transferred between Actions, while Connections are the physical interfaces between Assets.

Inputs/Outputs and Connections need to be modeled concurrently because the physical interfaces

need to be properly sized to support the commodity that is being transferred.

Assets are specified by Characteristics which represent qualitative and quantitative “ilities’ (e.g.

reliability, availability, composability, useability). When the Characteristics are quantitative, they

can be further defined by Measures {Measures of Effectiveness (MOE), Key Performance

Parameters (KPP), Measures of Performance (MOP), and Technical Performance Measures

(TPM)}. Assets also have a Location {Physical, Virtual, Orbital}.

The Program Management Viewpoint depicts the relationships between Action and Time {Phase,

Milestone, Schedule}. Assets specify Risks {Cost, Schedule, Technical} and incurs Cost {Actual,

Planned, Total Ownership}. Cost, Risk, and Time are related to Decision {Major Decision,

Problem, Resolution, Challenge, Issue}.

To realize a true virtual representation of the SoI, model structure must be implemented into the

modeling-process. Given the over-reliance on document-based processes in system engineering,

applying model structure to form the virtual representation of the system may seem unnatural.

Model structure requires a mindset change to realize the benefits of MBSE. These benefits include

gaining insights into SoI connectedness and emergent behavior. Table 6 depicts the assessment

and forecast of model structure to the MBSE effectiveness measures.

25

Table 6. Model Structures Assessment and Forecast.

Effectiveness

Measure

Model Structure

Expressiveness
Model structures are used to ensure that data can be expressed efficiently by modeling

the data, relationships, and attributes only once. This establishes concordance and

allows for emergent behavior that identifies SoI characteristics that heretofore have

been unrealized.

Precise

Model structures ensure a precise representation of the data by modeling the data,

relationships, and data only once. Many current MBSE implementations fail to use

model structures fully, thereby causing data to be represented in the model more than

once, which could yield in-precise data representations, especially as the data is

upgraded during the life of the model.

Presentation/

Communication

Model structures allow for the presentation of a system from a common data set.

Many current implementations are still based on the traditional systems engineering

product paradigm. Therefore, concordance is not guaranteed across different

viewpoints.
Model Construction/
Manageability

Tool dependent. Model structures are implemented differently in various tools.

Interoperable/
Logistical

Consistency

Tool dependent. Because model structures are currently tool dependent, exchanging

data, and maintaining the data relationships and attributes is problematic.

Usable Model structures will make the data usable by representing the data only once.

However, this requires a mindset change to be effective.

Concordance/
Referential Integrity

Model structures are at the heart of concordance. Without model structures,

concordance cannot exist. However, many current implementations focus on

collecting and populating data from a product perspective, thereby overlooking

concordance.

26

CHAPTER 5

MODELING PROCESSES

“The enterprise architecture must serve as the glue and bridge between the vision and its

execution.” - Kevin Brett (2022)

Model-based processes provide the analytical framework to conduct the analysis of the system

virtually defined in the model. The model-based processes may be traditional systems engineering

processes such as requirements management, risk management, or analytical methods such as

discrete event simulation, systems dynamics modeling, and dynamic programming.

In both traditional systems engineering processes, and in MBSE, different analytical approaches

are used to address the various challenges throughout the system’s lifecycle. The primary

difference with MBSE is, ideally, the system data is collected once, and used to address the many

system’s challenges.

There are some common misperceptions about MBSE processes. One misperception is that MBSE

is just systems engineering conducted in a model-based tool but yields traditional engineering

products. To be effective, the organization must change its processes to get the most benefit from

MBSE. Another misperception is that there is a “one size fits all solution” for MBSE processes.

Like traditional systems engineering processes, MBSE processes must be tailored for the given

system problem. A generic process can serve as a guide to satisfy model-based efforts throughout

the systems engineering lifecycle (DoD CIO, 2009).

The MBSE effort starts by determining the intended use of the model, which permits proper model,

data, and data structure and definition. “Intended Use” is a description of the problem to be

addressed by a model or simulation, and its associated data, including the system or process being

represented and the role it plays in the overall program. Intended use is defined by answering the

following questions below:

• What problem is being addressed?

27

• What are the key attributes of the problem (focus, epoch, data and model fidelity, model

type(s), and viewpoints to adequately portrait the data and results)? Table 7 defines the

key model attributes.

Table 7. Key Model Attributes Defined.

Attribute Definition Examples

Focus The system level that is the focus of the model’s

intended use.
• Component

• Sub-system

• System

• System of Systems

Epoch The planned time period that the model intends to

simulate.
• Current

• Near-term (1- 5 years)

• Long-term (> 5 years)

Fidelity The degree to which the model reproduces the state

and behavior of the real-world environment and

systems.

Fidelity is a subjective measure, however, accuracy,

precision, repeatability, resolution, scope, and

sensitivity.

• High fidelity – Measures, standards,

and perceptions are very similar to

real-world systems and environment.

• Medium fidelity – Measures,

standards, and perceptions are

somewhat similar to real-world

systems and environment.

• Low fidelity - Measures, standards,

and perceptions are marginally similar

to real-world systems and

environment.

Model Types The type and level of model required to achieve the

analysis purposes of the intended use.
• Static Model – A model that depicts a

system, and dependencies, at an instant

in time.

• Dynamic Model – A model that

depicts a system, its dependencies, and

behavior as a function of time.

Viewpoints Describes data drawn from one or more perspectives

and organized in a particular way useful to

management decision-making. A viewpoint

definition includes the information that should appear

in individual views; how to construct and use the

views; the modeling techniques for expressing and

analyzing the information; and a rationale for these

choices.

• Capability

• Operational

• Technical and Standard

• Systems

• Services

• Parametric

• Requirements

The second step is to determine the scope of the systems engineering problem. The following

questions should be considered when determining the scope of the MBSE effort:

• What are the functional bounds of the system?

28

• What are the technological bounds of the system?

• What are the geographical bounds of the system?

• What are the system constraints?

System boundaries are often difficult to determine. Sometimes the systems engineer will expand

the boundary of their system to simplify interfaces or inputs. A good rule of thumb to determine

the system boundary is, does the system have the requirements and funding for the element in

question? If the system’s controlling agency does not have jurisdiction of the requirements or

funding of the element, it resides outside the boundary of the system.

The third step is to determine the data required to support the MBSE effort. Data takes on several

dimensions in this step. What data elements are needed? This includes data from different

perspectives (i.e. capability, functional, system, parametric, etc.) to be represented in various

viewpoints later in the process.

What level of detail does the data need to support? It is often the practice to over-collect data to

the lowest possible level. Data only needs to be collected to the level required to address the

systems engineering problem. Collecting data at a lower-level results in a waste of resources and

time. Data that is collected to address future detailed concerns will incur a cost to maintain its

accuracy.

The fourth step is to collect the data and make relationships between the data. Correlating the data

to form relationships allows for concordance that was discussed in the Model Structure section.

The data relationships for LML governed by rules defined the LML Relationships Matrix (Fig. 8)

and are further defined for each program by the CDM.

The fifth step is to conduct the analysis in support of the MBSE objectives. Traditional MBSE

analysis often uses architectural data to conduct capability analysis, gap analysis, interoperability

analysis, and architecture closure. To be most effective, MBSE must include analysis types found

in operations research (i.e. discrete event simulation, optimization, etc.), and system dynamics

modeling, in addition to architectural analysis. Table 8 shows the attributes of modeling analysis

for each phase in the systems engineering lifecycle.

29

Table 8. Attributes of Modeling Analysis Throughout the Systems Lifecycle.

Lifecycle

Phase

Focus Epoch Fidelity Analysis Type

Conceptual

Design

• Single System

• Multiple

Systems

• System of

Systems

• Near-term

(1- 5 years)

• Long-term

(> 5 years)

Medium

Low

• Capability Analysis

• Gap Analysis

• Mission Analysis

Preliminary

Design

• Single System

• Multiple

Systems

• System of

Systems

• Near-term

(1- 5 years)

• Long-term

(> 5 years)

High

Medium
• Operational Modeling and

Architecting

• System Modeling and

Architecting

• Performance Analysis

(Predictive)11

• Requirements Analysis12

Detailed

Design

• Component

• System

• Multiple

Systems

• System of

Systems

• Current

• Near-term

(1- 5 years)

• Long-term

(5 years < t

< 10 years)

High

Medium

• Trade-off Analysis13

• Initial Performance

Analysis (Prototypes)

• Risk Analysis14

• Project Analysis

Mission

Assurance
• Component

• System

• Multiple

Systems

• System of

Systems

• Current

• Near-term (1

year)

High

Medium

• Verification

• Validation

• Accreditation

• Certification

• Integration15

Operations and

Support
• Single System

• Multiple

Systems

• System of

Systems

• Current

• Near-term (1

year)

High

Medium

• Performance Analysis

(Actual)

• Risk Analysis

11 Performance Analysis use use simulations to analyze system performance, including response times, throughput,

and resource utilization, helping to identify bottlenecks and optimize performance.
12 Requirements Analysis use simulations to validate and refine system requirements by modeling different scenarios

and assessing how well the system meets its intended functions.
13 During the detailed design phase, simulations are used to explore different design alternatives, optimize system

performance, and identify potential issues early in the development process.
14 Risk analysis use static and simulation models help assess risks by modeling potential failure modes and their

impacts, enabling engineers to develop mitigation strategies.
15 Integration and testing use simulation models to plan and evaluate the integration of system components by testing

interactions and dependencies in a virtual environment before physical integration.

30

Due to limitation in modeling-languages and architecture frameworks, MBSE has been relegated

to the early phases – conceptual and preliminary system design - of the systems engineering

lifecycle. To be truly respected, MBSE must be expanded to include the entire lifecycle to include

test and evaluation and operations and sustainment. Live, virtual, and constructive (LVC) offers

an untapped potential for expanding MBSE to realize a virtual representation to explore the SoI

that have not been previously possible. Table 9 shows the assessment and forecast of model-

based processes to the MBSE effectiveness measures.

Table 9. Model-Based Processes Assessment and Forecast.

Effectiveness Measure Model-Based Processes

Expressiveness

MBSE process allows for the expression of multiple concepts to include at a

minimum capabilities, functional, system , standards, and programmatic data.

Heretofore, the MBSE practices have been relatively silent on mathematically-

based processes, except for the most basic problems.

Precise

MBSE process allows for system data to be represented in unambiguously at

various levels of fidelity and decomposition, and from various viewpoints.

Presentation/

Communication

The generic MBSE processes allows for the data to be presented in various

viewpoints to meet stakeholders needs. However, to be able represent the data

accurately and efficiently, the planning, collection, storage, correlation, and the

engineering analysis of data is essential.

Model Construction/

Manageability

A well defined CDM will allow for effective model construction, and will yield

reusable models, and repeatable analysis results.

Interoperable/Logical

Consistency

Not Applicable

Usable A well-define model-based on a CDM will allow for the effective model-based

processes that will yield insights into the SoI that are not available with

traditional systems engineering processes.

Concordance/Referential

Integrity

Not Applicable

31

CHAPTER 6

PRESENTATION FRAMEWORKS

“The purpose of [model] is to support decision-making, and it must be data driven, not diagram

driven.” - Kevin Brett (2022)

Presentation frameworks16 provide the logical structure to categorize and organize various system

views into thematic viewpoints, that serves as a standard for a given set of stakeholders. The

“dirty little secret” of presentation frameworks is that they have no unique views of their own;

every view is a standard system engineering diagram that is renamed for the framework.

Presentation frameworks are developed by answering the architecture interrogatives of who, what,

when, where, why, and how. All presentation frameworks provide: definitions of standard views

within the framework; guidance and rules for organizing viewpoints, structuring data, and systems

engineering views; and, references to compare and contrast models when in the same format. The

frameworks enable decisions across the enterprise due to the commonality and familiarity with the

standard viewpoints and views. Complexity in the model-based ecosystem is significantly reduced

by separating and characterizing systems issues into various viewpoints and views.

The Zachman Enterprise Architecture Framework was the first logical structure for classifying and

organizing system information to represent all stakeholders. The Zachman Framework is

organized by the architecture interrogatives - what (data), how (function), where (network), who

(people), when (time), why (motivation)) compared against the stakeholder perspectives

(executive perspective(planner), business management perspective (owner), architect perspective

(designer), engineer perspective (builder), technician perspective (maintainer), operator

perspective (user). At the intersection of each architecture interrogative and stakeholder

perspective is the defined view (Fig. 9) (Zachman, 1988; Zachman, n.d.).

16 The term “presentation framework” is used in lieu of “architecture framework” because the views defined in

architecture frameworks are focused on the early systems engineering activities, while the views in presentation

frameworks are extended to include views throughout the system lifecycle. The goal is to perform model-based system

engineering and not model-based systems architecting.

32

Fig. 9. Intersection of Architecture Interrogatives and Stakeholder Perspectives.

Architectural frameworks are usually established at an enterprise level, and not with individual

programs. The U.S, government uses several architectural frameworks, with one of the most

common being the Department of Defense Architecture Framework (DoDAF), provides guidance

for describing architectures for both DoD operations and business processes. The framework

provides the guidance, rules, and product data descriptions for developing and presenting

architecture descriptions that ensure a common denominator for understanding, comparing, and

integrating families of systems, systems of systems, and interoperating and interacting

architectures (DoD CIO, 2009).

DoDAF categorizes the SoI into eight viewpoints: capabilities; operations; systems; services;

standards; project; data and information; and all viewpoints. These eight viewpoints are further

defined by 52 views (formerly called diagrams) to represent the SoI, thus allowing the system to

be explored holistically, or from a single perspective. The framework also has the flexibility to

include other models, or “fit for purpose views,” that may be needed to address perspectives that

are not included in the framework (DoD CIO, 2009). The DoDAF viewpoints and views

complement each other from a compressive virtual representation of the SoI. Fig. 10 shows an

example of interactions within a systems architecture (Vaneman and Carlson, 2018).

33

Fig. 10. Example of Interactions within DoDAF (Vaneman and Carlson, 2018).

While DoDAF is good for the defense related systems, it is not representative of other enterprises

with the U.S. Government. A popular non-defense architecture is the Federal Enterprise

Architecture Framework (FEAF), whose purpose is to standardizes and streamline architecture

development processes, reduce duplication, and increase the agility, flexibility, and effectiveness

of primarily information technology systems. NASA has the Space Mission Architectural

Framework (SMAF) that represents the information required for the unique unmanned space

missions. A brief description of frameworks commonly used by the U.S. Government are shown

in Table 10.

34

Table 10. Summary of Frameworks used by the U.S. Government.

Architectural

Framework
Brief Description

Department

of Defense

Architecture

Framework

(DoDAF)

DoDAF addresses the conceptual model enabling the development of architectures and provides

guidance on the development of architectures supporting the adoption and execution of systems

and services. DoDAF consists of eight viewpoints and 52 views.(DoD CIO, 2009).

Federal

Enterprise

Architecture

Framework

(FEAF)

FEAF was established to facilitate shared development of common processes and information

among Federal Agencies and other government agencies. FEAF is partitioned into:

• Business Architecture – Addeess the architecture interogoratives of “what,” “when,” “

how,” “who,” and “why.” It does not address “where” as the Zachman Framework does.

• Data Architecture: Information used by the organization to conduct business and make

admisitrative decisions.

• Application Architecture - System and service applications that process the data according

to defined business rules.

• Technology Architecture - Systems that supports the business, data, and application

architectures. (OMB, accessed April 5, 2024)

NASA Space

Mission

Architecture

Framework

(SMAF)

SMAF is a framework that represents uncrewed space missions. Viewpoints include:

• Enterprise/Mission Concept Viewpoint – Models the top-level organizational perspective.

• Mission Operation Viewpoint - Models launch, ground, and flight operations.

• Engineering Viewpoint – Models the technical activities and resulting products involved in

formulation and implementation of the mission. This includes the technical solution view

that model the conceptual and functional perspectives, and the product realization

viewpoint that models the implementation of the functional architecture into a physical

system.

• Project Implementation Viewpoint – Addresses the architecture from the perspective of

overall project planning, management, and control.

• Science Viewpoint – Models the science mission being conducted (NASA, 2021).

Unified

Architecture

Framework

(UAF)

UAF defines ways of representing an enterprise architecture that enables stakeholders to

Maintain a holistic perspective while focusing on detailed specific areas of interest. UAF

contains 75 views, and bridges the existing DoDAF, U.K.’s Ministry of Defence’s Architecture

(MoDAF) and the NATO Architecture Framework (NAF) (OMG, 2020).

The Unified Architecture Framework (UAF) has been developed as the next generation

architecture framework for defense enterprises. The UAF is not developed as a new architectural

framework per se, but a way of bridging the differences between DoDAF, United Kingdom’s

Ministry of Defense Architecture Framework (MODAF), and the NATO Architecture Framework

35

(NAF) so that these defense related frameworks are more compatible. Given the cooperative

system development, UAF is the first modeling standard to enjoy adoption from around the world

(Hause, 2012).

UAF defines ways of representing an enterprise architecture that enables stakeholders to focus on

specific areas of interest in the enterprise while retaining sight of the big picture. The scope of

UAF 10 viewpoints (metadata. strategic, operational, services, personnel, resources, security,

projects, standards, and actual resources), and extends DoDAF from 56 to 75 views. Table 11a-

h shows a mapping between DoDAF, UAF, SysML, and LML views17 (DoD CIO, 2009; OMG,

2019; OMG, 2020; LML, 2022).

Table 11a. Mapping Capability Views between DoDAF, UAF, SysML, and LML.

DoDAF View UAF View UML/SysML

Diagram

LML Model

CV-1: Vision • St-Sr: Strategic Structure UML Use Case

Diagram

Asset Diagram

CV-2: Capability

Taxonomy
• St-Tx:Strategic

Taxonomy

Activity Diagram Hierarchy Diagram

CV-3: Capability Phasing • St-Rm:Strategic

Roadmap: Phasing

N/A Timeline Chart

CV-4: Capability

Dependencies
• St-Cn:Strategic

Connectivity

N/A Matrix based on Actions

and Assets

CV-5: Capability to

Organizational

Development Mapping

• St-Rm:Strategic Roadmap N/A Matrix based on Actions

and Assets

CV-6: Capability to

Operational Activities

Mapping

• Op-Tr:Opreational

Treceability

N/A Matrix based on Actions

CV-7: Capability to

Services Mapping
• Sv-Tr:Services

Traceability

• St-Tr:Strategic

Traceability

N/A Matrix based on Actions

and Assets

17 Table 10a-h do not address the UAF views for meta-data and security since a DoDAF correlation does not exist.

36

Table 11b. Mapping Operational Views between DoDAF, UAF, SysML, and LML.

 DoDAF View UAF View UML/SysML

Diagram

LML Model

OV-1: High Level

Operational Concept

Graphic

• Op-Tx:Operational

Taxomomy

• Sm-Ov: Summary and

Overview

UML Use Case

Diagram

Asset Diagram

OV-2: Operational

Resource Flow

Description

• Op-Sr:Operational Structure

• Op-Tx:Operational

Taxonomy

• Op-Cn:Operational

Connectivity

UML Class Diagram Asset Diagram

OV-3: Operational

Resource Flow Matrix
• Op-Cn: Operational

Conectivity

N/A Matrix of Input/Outputs

OV-4: Organizational

Relationships Chart
• Ar-Cn Actual Resources

Connectivity

• Rs-Sr: Actual Resources

Structure

• Pr-Cn:Personnel

Connectivity

• Pr-Ct:Personnel

Constratints: Competence

UML Class Diagram Asset Diagram

OV-5a: Operational

Activity Decomposition

Tree

• Op-Pr:Operational

Processes

• Pr-Sr:Pesonnel Structure

• Pr-Tx:Personnel

Taxonoomy

UML Class Diagram Hierarchy Chart

OV-5b: Operational

Activity Model
• Op-Pr:Operational

Processes

Activity Diagram IDEFD0 Diagram

OV-5b/6c – Action

Diagram (Fit-for-

purpose)

• Op-Pr:Operational

Processes

• Op-Is:Operational

Interacton Scenarios

• Pj-Pr: Projects Processes

N/A Action Diagram

OV-6a: Operational

Rules Model
• Op-Ct:Operational

Constraints

N/A N/A

OV-6b: State Transition

Description
• Op-St:Operational-States State-machine

Diagram

State-Machine Diagram

OV-6c: Event-Trace

Description
• Op-Is:Operational

Interaction Scenarios

Sequence Diagram Sequence Diagram

37

Table 11c. Mapping Systems Views between DoDAF, UAF, SysML, and LML.

DoDAF View UAF View UML/SysML

Diagram

LML Model

SV-1 Systems Interface

Description
• Rs-Tx:Resources Taxonomy

• Rs-Sr:Resources Structure

• Ar-Cn: Actual Resource

Connectivity

Block Definition

Diagram

Asset Diagram

SV-2 Systems Resource

Flow Description
• Rs-Sr:Resources Structure

• Rs-Tx:Resource Taxonomy

• Ar-Cn:Actual Resource

Connectivity

Internal Block

Definition Diagram

Asset Diagram

SV-3 Systems-Systems

Matrix
• Rs-Cn:Resources

Connectivity

N/A Matrix based on

Assets

SV-4 Systems

Functionality Description
• Rs-Pr: Resource Processes

• Pr-Pr: Personnel Processes

Activity Diagram IDEF0 Diagram

SV-5a Operational

Activity to Systems

Function Traceability

Matrix

• Pr-Tr:Personnel Tracability

• Rs-Tr:Resources Traceability

N/A Matrix based on

Actions

SV-5b Operational

Activity to Systems

Traceability Matrix

• Pr-Tr:Personnel Traceability

• Rs-Tr:Resources Traceability

N/A Matrix based on

Actions and Assets

SV-6 Systems Resource

Flow Matrix
• Pr-Cn:Personnel

Connectivity

• Rs-Cn:Resources

Connectivity

N/A Matrix of

Input/Outputs

SV-7 Systems Measures

Matrix
• Pm-Me:Parameters

Measurements

• Pr-Ct:Personnel Constraints:

Performance

Parametrics Diagrams Matrix based on

Measures and Assets

SV-8 Systems Evolution

Description
• Rs-Rm:Resources Roadmap:

Evolution

State-machine

Diagram

Timeline Diagram

SV-9 Systems Technology

& Skills Forecast
• Rs-Rm:Resources Roadmap:

Forecast

N/A Timeline Diagram

SV-10a Systems Rules

Model
• Pr-Ct:Personnel Contrataints:

Drivers

• Rs-Ct:Resources Constraints

N/A N/A

SV-10b Systems State

Transition Description
• Rs-St:Resources States State-Machine

Diagram

State-Machine

Diagram

SV-10c Systems Event-

Trace Description
• Rs-Is:Resources Interaction

Scenarios

Sequence Diagram Sequence Diagram

38

Table 11d. Mapping Services Views between DoDAF, UAF, SysML, and LML.

DoDAF View UAF View UML/SysML

Diagram

LML Model

SvcV-1 Services Context

Description
• Rs-Tx:Resource Taxonomy

• Rs-Sr: Resource Structure

• Ar-Cn: Actual Resource Connectivity

• Sv-Sr:Services Structure

• Services Taxonomy

Block Definition

Diagram

Asset Diagram

SvcV-2 Services Resource

Flow Description
• Rs-Sr: Resource Structure

• Rs-Tx:Resource Taxonomy

• Ar-Cn:Actual Resource Connectivity

• Sv-Sr:Services Structure

Internal Block

Definition

Diagram

Asset Diagram

SvcV-3a Systems-Services

Matrix
• Sv-Cn:Services Connectivity N/A Matrix based on

Assets

SvcV-3b Services-Services

Matrix
• Sv-Cn:Services Connectivity Activity Diagram IDEF0 Diagram

SvcV-4 Services

Functionality Description
• Rs-Pr: Resource Processes

• Pr-Pr: Personnel Processes

• Sv-:Services Processes

N/A Matrix based on

Actions

SvcV-5 Operational

Activity to Services

Traceability Matrix

• Sv-Tr:Services Traceability N/A Matrix based on

Action and

Asset

SvcV-6 Services Resource

Flow Matrix
• Sv-Cn:Services Connectivity N/A Matrix based on

Input/Outputs

SvcV-7 Services Measures

Matrix
• Pm-Me:Parameters Measurements Parametrics

Diagram

Matrix based on

Measures and

Assets

SvcV-8 Services Evolution

Description
• Pr-Rm:Personnel Roadmap: Evolution

• Sv-Rm:Services Roadmap: Evolution

State-machine

Diagram

Timeline

Diagram

SvcV-9 Services

Technology & Skills

Forecast

• Pr-Rm:Personnel Roadmap: Forecast

• Sv-Rm:Services Roadmap: Forecast

N/A Timeline

Diagram

SvcV-10a Services Rules

Model
• Sv-Ct:Services Constraints N/A N/A

SvcV-10b Services State

Transition Description
• Sv-St:Services States State-Machine

Diagram

State-Machine

Diagram

SvcV-10c Services Event-

Trace Description
• Pr-Is:Personnel Interaction Scenarios

• Sv-Is:Services Sequences

Sequence

Diagram

Sequence

Diagram

39

Table 11e. Mapping All Views between DoDAF, UAF, SysML, and LML.

DoDAF View UAF View UML/SysML

Diagram

LML Model

All Viewpoint

AV-1: Overview and

Summary Information
• Sm-Ov: Summary and

Overview

N/A Statements

AV-2: Integrated

Dictionary
• Dc: Dictionary N/A Statements

Table 11f. Mapping Project Views between DoDAF, UAF, SysML, and LML.

DoDAF View UAF View UML/SysML

Diagram

LML Model

PV-1: Project Portfolio

Relationships
• Pl-St:Project Structure N/A Matrix based on Time

and Assets

PV-2: Project Timelines • Pr-Rm:Personnel

Roadmap: Availabiliy

• Pj-Cn:Projects

Connectivity

• Pj-Rm: Projects Roadmap

N/A Timeline Chart

PV-3: Project to Capability

Mapping
• Pj-Tr: Projects Tracability N/A Matrix based on Time

and Actions

Table 11g. Mapping Data and Information Views between DoDAF, UAF, SysML, and LML.

DoDAF View UAF View UML/SysML

Diagram

LML Model

DIV-1:Conceptual Data

Model
• If: Information UML Class Diagram,

Block Definition

Diagram

Actions, Assets, and

Inputs/Outputs

DIV-2: Logical Data

Model
• If: Information UML Class Diagram,

Block Definition

Diagram

Actions, Assets, and

Inputs/Outputs

DIV-3: Physical Data

Model
• If: Information UML Class Diagram,

Block Definition

Diagram

Actions, Assets, and

Inputs/Outputs

40

Table 11h. Mapping Standards Views between DoDAF, UAF, SysML, and LML.

DoDAF View UAF View UML/SysML

Diagram

LML Model

StdV-1 Standards Profile Sd-Tr: Standards Traceability N/A Statements

StdV-2 Standards Forecast Sd-Rm: Standards Roadmap N/A Timeline Chart

Architecture frameworks should be extended into presentation frameworks to include data that is

relevant across the system lifecycle. The goal is to implement MBSE, which is greater than

“model-based system architecting,” therefore, new viewpoints and views need to be defined to

represent the full systems engineering lifecycle. Table 12 suggests new viewpoints and views to

be included in a presentation framework. Table 13 shows the assessment and forecast of

presentation frameworks to the MBSE effectiveness measures.

41

Table 12. Suggested Viewpoints and Views for the Presentation Framework.

Viewpoint Views

Detailed Design • Computer Aided Design (CAD)

• Computer Aided-Engineering (CAE)

Maintainability Analysis • Modularity Diagrams

• Dependency Graphs

• Action/Activity Diagram

• Matrix

Performance Analysis • Scenario Analysis

• Simulations

• Flow Chart

• Bar Charts

• Pie Charts

• Dashboards

• Matrix

Prototypes • Mock-ups

• Interactive Prototypes

• “Non-qualified” components

Reliability Analysis • Fault Tree Analysis (FTA) Diagram

• Reliability Block Diagrams

• Event Tree Analysis (ETA)

• Pareto Charts

• Matrix

Requirements Analysis • SysML Requirements Diagram

• Hierarchy Chart

• Sequence Diagrams

• System Context Diagrams

• Process Maps and Flowcharts

• Functional Decompososition Diagrams

Risk Analysis • Risk Matrix

• Fault Tree Analysis (FTA) Diagram

• Event Tree Analysis (ETA)

• Scenario Analysis

Training • Interactive Simulations

• Storyboards

• Mind Maps

Verification and Validation (Testing) • Test Execution Dashboards

• Error Tracking Charts

• Dependency Graphs

• Performance Monitoring Charts

42

Table 13. Presentation Frameworks Assessment and Forecast.

Effectiveness

Measure
Presentation Framework

Expressiveness

Presentation frameworks provide the definitions, references, guidance and rules for

structuring, classifying, and organizing architectures. Current frameworks focus on the

early systems engineering phases. Presentation frameworks should be extended to include

data that is relevant across the system lifecycle (e.g. requirements, risk, test and evaluations,

programmatic data).

Precise
Complexity in a model-based environment is significantly reduced by separating and

characterizing systems issues into various data-driven viewpoints and views.

Presentation/

Communication

Presentation frameworks promote familiarity and allow it to be easier to compare and

contrast models when in the same format. However, after three decades of formal

frameworks, wide-spread decision-making based on the models has not been realized. The

improvement of the presentation and communication of models based on the frameworks is

not a technological issue, but a human issue where decision-makers must understand how

the models can be used to make decisions.

Model Construction/
Manageability

Presentation frameworks establish standard views, descriptions, data structures, and generic

approach to developing the models. Since presentation frameworks are implemented in

MBSE tools, the ease of model construction and manageability is tool dependent.
Interoperable/

Logistical

Consistency

Interoperability and logical consistency of presentation frameworks is based on modeling

languages and model structures; therefore, the presentation frameworks have the same

characteristics.

Usable
The presentation frameworks establish standard views, descriptions, data structures, and a

generic approach to developing the models. This commonality fosters familiarity among

all stakeholders.

Concordance/
Referential Integrity

When visualization models are derived from the data, concordance will likely result. While

visualization models within a viewpoint are related, visualization models from across the

viewpoints is also defined. These relationships exist because relationships exists within the

data, thus ensuring concordance.

43

CHAPTER 7

MODELING TOOLS SELECTION

“All models are wrong; some models are useful.” – W. Edwards Deming

Model-Based Systems Engineering tools are general purpose software applications that use

modeling languages, and support the specifications, to generate, modify, and manage the system

model and complex system representations therein. The tools are represented in the center of the

Venn diagram (Fig. 2) because each tool has different strengths and weaknesses with respect to

the four MBSE components. Each organization has a different program focus, the engineering

staff has different modeling skills, and managers want to see the system data portrayed in a way

that maximizes the decision-making process. The “bottom-line” of MBSE tools is, “one size does

not fit all.”

The goal of the tool selection process is to explore the trade space (maximum effectiveness area

in Fig. 2) that exists between the four MBSE components, using a multi-criteria approach. By

evaluating these tools within this trade-space, organizations can understand which MBSE tool best

meets their systems engineering needs. Fig. 11 shows the five-step process used in the tool

selection process.

Fig. 11. Five Step Process used for MBSE Tool Study (Vaneman, et al., 2021).

44

The first step uses the four components of MBSE are further defined by deriving additional criteria

that is specific to the organization. This also defines a rubric for evaluation of the criteria. The

rubric served as a guide for the tool evaluation team while evaluating each tool and will be further

discussed in Step 3. The general scale for the rubric is:

1 = Tool does not meet the criteria

3 = Tool partially meets the criteria

5 = Tool fully meets the criteria

While each MBSE component will be further defined, and an associated rubric created for

illustrative purposes on the analysis of the modeling process component will be shown. Modeling

processes provide the analytical framework to conduct the analysis of the system virtually defined

in the model, throughout all phases of the systems engineering lifecycle. Tables 14a-b show the

criteria and rubric defined for modeling processes focus on the types of models developed during

the systems engineering and architecture process, and include the ability to model:

• Operational architectures;

• Physical architectures;

• Architecture planning;

• Program management;

• System requirements;

• Discrete event simulations;

• Stochastic simulations;

• System dynamics;

• Verification & validation;

• Entire system lifecycle to include all lifecycle disciplines.

45

Table 14a. Model-Based Processes Criteria and Rubric.

Criteria Rubric

The MBSE tool can model the

operational architecture (i.e. activity or

action diagrams, IDEF0 diagrams, state

transition diagram, etc.)

1 = The MBSE tool cannot model operational architectures;

5 = The MBSE tool can model operational architectures.

The MBSE tool can model the systems

architecture (i.e. block definition diagram,

internal black definition diagram, asset

diagram, network diagram, system-to-

system matrix, etc.).

1 = The MBSE tool cannot model operational architectures;

5 = The MBSE tool can model operational architectures.

The MBSE tool can model the

architecture modeling planning process

(i.e. overview and summary information,

data dictionary, conceptual data model,

logical data model, physical data model,

etc.)

1 = The MBSE tool does not model any aspect of the architecture

modeling planning process;

3 = The MBSE tool partially models the architecture modeling planning

process, but does not include all aspects (i.e. overview and summary

information, data dictionary, conceptual data model, logical data model,

physical data model, etc.);

 5 = The MBSE tool fully models the architecture modeling planning

process.

The MBSE tool can model the program

and project management processes (i.e.

project schedule, cost profile, risk matrix,

etc.).

1 = The MBSE tool cannot model program and project management

processes;

5 = The MBSE tool can model program and project management

processes.

The MBSE tool can model and manage

system requirements.

1 = The MBSE tool does not model or manage system requirements;

3 = The MBSE tool does model system requirements, but does not

allow for those requirements to be managed within the tool (i.e. the

system requirements can be captured and portrayed within the MBSE

tool, but cannot manage requirements);

5 = The MBSE tool models and manages requirements (i.e. managing

requirements means that requirements can be managed within the

MBSE tool, or has a direct, real-time, two-way interface with another

tool that will manage requirements (e.g. DOORS)).

The MBSE tool can numerically model

and simulate deterministic (discrete

event) simulations.

1 = The MBSE tool cannot numerically model and simulate discrete

event simulations;

5 = The MBSE tool can numerically model and simulate discrete event

simulations.

46

Table 14b. Model-Based Processes Criteria and Rubric.

Criteria Rubric

The MBSE tool can numerically model

and simulate stochastic simulations with

multiple statistical distributions.

1 = The MBSE tool cannot numerically model and simulate stochastic

simulations;

5 = The MBSE tool can numerically model and simulate stochastic

event simulations.

The MBSE tool can numerically model

and simulate system dynamics

simulations.

1 = The MBSE tool cannot numerically model and simulate system

dynamics simulations;

5 = The MBSE tool can numerically model and simulate system

dynamics simulations.

The MBSE tool can model validation and

verification processes.

1 = The MBSE tool cannot model validation and verification processes;

5 = The MBSE tool can model validation and verification processes.

The MBSE tool models processes across

the entire system lifecycle (to include all

lifecycle disciplines).

1 = The MBSE tool models processes for only a certain portion of the

system lifecycle (e.g., architecture development phase);

3 = The MBSE tool models the entire system lifecycle, but only from a

systems engineering perspective (but not other lifecycle disciplines such

as program and project management);

5 = The MBSE tool models the entire system lifecycle (to include all

lifecycle disciplines).

Each criteria defined in Step 1 may have a different importance to different organizations. In the

second step, the organization determines the weighted priority for criteria. One method is to

apply a “hundred-coin exercise” to determine the individual criteria within the components. In a

“hundred-coin exercise,” the organization is asked to evaluate each criteria as if they had a

“hundred coins,” placing the corresponding “number of coins” against the importance of each

criteria. If there are multiple respondents, the results are averaged, with the result representing the

importance of each criteria to the respondents collectively. The modeling process criteria weights

are shown in Fig. 12.

47

Fig.12. Modeling Process Weights (Vaneman, et al., 2021).

Four modeling process criteria emerged as the most important to the organization. The most

important criteria is that the MBSE tool can model and manage system requirements. The

modeling processes places a high emphasis on the ability of the MBSE tool to model program and

project management processes. Two additional processes that were significantly weighted and are

also fundamental to systems engineering, are:

48

• The tool can model validation and verification processes.

• The tool model the architecture modeling planning process (i.e. overview and summary

information, data dictionary, conceptual data model, logical data model, physical data

model, etc.).

In the third step, the tool reviewers evaluate each candidate tool against the defined criteria using

the rubric. The candidate tools are assumed to have been qualified as being approved by the

organization, with this evaluation selecting the best tool, from the approved tools, for the required

modeling task.

To maintain an unbiased tool evaluation, it is important that the tool reviewers don’t know the

weights determined by the organization in Step 2, and that those determining the weights don’t

know how each tool is being evaluated. Fig. 13 shows the raw scores for the four candidate tools

(each bar color represents a separate tool).

All tools were evaluated satisfactorily against most of the criteria. One notable exception is all the

tools scored poorly against the criteria, “The MBSE tool can numerically model and simulate

system dynamics simulations.” This is not a major concern since systems dynamics modeling is

not widely used in most program offices. While each tool developer likes to boast about their tool’s

capabilities, no single tool does everything, and certainly not everything well.

49

Fig. 13. Model-Based Processes Raw Scores (Vaneman et al., 2022).

The fourth step brings together the weighted criteria as defined by the organization and the tool

evaluation. The weighted criteria defined in Step 2 multiplied by the tool evaluation scores in Step

3. The purpose of this step is to identify which tool is best for a given criteria as defined by the

organization. Since each organization is likely to have different weights to match their

organizational needs, the weighted scores will better differentiate which tool best meets their

needs. Table 15 shows the modeling process weighted scores (Vaneman, et al., 2021).

50

Table 15. Modeling Processes Weighted Scores (Vaneman et al., 2022).

The fifth step recognizes that each component may not be of equal importance to the users. As

such, the “hundred-coin exercise” is repeated for the four MBSE components. In this example,

each of the four components are equally weighted. The overarching results are then compared

using a radar chart (Fig. 14) as a visual representation to show the relative strengths of each tool

with respect to the four MBSE components (Vaneman, et al., 2021).

51

Fig. 14. Overall MBSE Tool Analysis Results (equally weighted) (Vaneman et al., 2021).

The criteria weightings were unique to the organization. However, the criteria can be weighted by

other organizations to derive what is important to them. One thing that is certain is different

organizations will have different MBSE needs. If the criteria are accepted by another organization,

the tool evaluation step is not necessary to redo if the same tools are being considered. The tool

evaluation can be applied to the new organizations weights and re-evaluated in Steps 4 and 5.

52

Likewise, if the organization wants to evaluate other tools, the weighting will not have to be re-

done because they already know what is important to them. The new tool(s) can be independently

evaluated, and then can be evaluated against Steps 4 and 5.

53

CHAPTER 8

EPILOGUE

“Often the largest single cause of an enterprise failing to adopt or shift to a new

paradigm is the inability or refusal to see beyond current patterns of thought,

behavior, structures, rules and assumptions.” – Kevin Brett (2022)

Despite the almost two-decade emphasis placed on MBSE, the discipline has failed to keep pace

with the ever-increasing complexities of systems. Over-reliance on an extremely limited number

of modeling languages and tools, the failure to address all lifecycle disciplines, and the focus on

modeling mechanics instead of modeling the system, has resulted in many model-based activities

being relegated to the beginning of the system’s lifecycle, thereby neglecting the holistic approach

that is the cornerstone of the systems engineering discipline.

The principles of MBSE are the foundation of model-based approaches SoI. To further the

modeling approaches, the concept of digital engineering is being pursued. Digital engineering is

an integrated digital approach that uses authoritative sources of system’s data to create an

interconnected, federation of models that integrates engineering models, from various engineering

domains, as a holistic representation of all relevant system perspectives, to design, develop,

analyze, test, optimize, and manage complex systems throughout the system’s lifecycle.

Three goals require the successful understanding and implementation of MBSE for digital

engineering to be effective. First, effective digital engineering requires formalized model

development to establish the virtual representation of the SoI which was conceptually presented in

Fig.1 (DASD, 2018). This approach is significantly different than document-based engineering

where each entity can be represented multiple times, there is no concordance between entities, and

emergent behavior cannot be achieved. Digital engineering is a paradigm shift and requires a

mindset change in engineering processes and expectations of the artifacts required during the

system’s lifecycle. The failure to recognize this paradigm is one of the key inhibitors to effective

digital engineering and MBSE implementation.

54

Second, the establishment of an authoritative source of truth (ASoT), which thoroughly qualifies

the best models to represent a given aspect of the SoI (DASD, 2018). If an ASOT is going to be

effective each entity has a singular representation. Multiple representations will further propagate

the problems encountered in document-based engineering. To achieve an ASoT, there must be an

understanding of how the data in the models are vetted from an authoritative source and are

properly verified, validated, and accredited (VV&A)18 to represent the SoI19. The CDM is a good

tool to understand how the models, representing different components, processes, or disciplines

interact to form a cohesive, and correlated, data structure that depicts how data is shared within

the ASoT.

As digital engineering, and the ASoT evolves, technical approaches such as artificial intelligence,

big data, and cloud and edge computing will have to be adopted and embraced to address

scalability, data and model interoperability, and data management. Fig. 15 is a conceptual

diagram showing the various aspects of a future data-driven engineering ecosystem. Notice that

the human is central to this concept, representing the human-technology fusion that is essential to

fully realizing the digital engineering paradigm shift.

18 Verification, validation, and accreditation (VV&A) are three interrelated, but distinct processes used to ensure the

credibility and reliability of models and simulations. Here's a brief overview of each ((AcqNotes, n.d.):

- Verification: This process determines whether a model's implementation and its associated data accurately

represent the developer’s conceptual description and specifications. Essentially, it's about checking if the model

was built correctly.

- Validation: This process assesses whether a model and its associated data provide an accurate representation of

the real world from the perspective of the intended uses of the model. It's about ensuring the model behaves as

expected in real-world scenarios.

- Accreditation: This is the official certification that a model, simulation, or a federation of models, along with its

associated data, is acceptable for use for a specific purpose. It confirms that the model meets the necessary

standards and requirements.

19 Verification and validation are well-known processes in modeling, simulation, and analysis, but are mostly absent

in systems engineering. If the data in the ASoT is going to be “authoritative,” the V&V processes must be

established for systems engineering models individually and for federated models collectively.

55

Fig. 15. Data-Driven Engineering Concept.

The third goal is to exchange and integration of models and data sources between disparate system

lifecycle disciplines, modeling languages, tools, and presentation frameworks, while maintaining

and storing its native format (DASD, 2018). The focus on modeling artifacts, vice data, makes the

exchange and integration of data impossible. An often-ignored common denominator between

the model-based engineering approaches is that data is the foundation of all models. The

translation and mapping of data represented by various modeling-languages and presentation

frameworks is the foundation of sharing data. Often, modeling languages and presentation

frameworks are thought to be mutually exclusive with organizations failing to realize that each

describes the SoI slightly differently with different syntax and semantics, yet they are describing

the same thing.

MBSE De-Mystified is more than an attempt to make sense of a topic that is more complex than

recognized, but it is a call to actions that requires fundamental to realize the benefits of this exciting

model-based renaissance.

56

REFERENCES

AcqNotes n.d., The Defense Acquisition Encyclopedia.

https://acqnotes.com/acqnote/tasks/verification-validation-and-accreditation (Accessed

December 25, 2024)

Bajaj, Manasm Sanford Friedenthal and Ed Seidewitz. 2022. Systems Modeling Language

(SysML v2) Support for Digital Engineering. INSIGHT March 2022 Volume 25 Issue 1.

Booch, Grady. James Rumbaugh,, and Ivar Jacobson 2005. The Unified Modeling Language

User Guide (2 ed.). Boston, MA: Addison-Wesley.

Brett, Kevin. 2022. The Bionic Enterprise: Architecting the Intelligent Society of the Future.

Stafford, VA: Blue Eagle Books.

Dam, Steven H. 2015. DoD Architecture Framework 2.02: A Guide to Applying Systems

Engineering to Develop Integrated, Executable Architectures. Manassas, VA: SPEC

Innovations

Dam, Steven H. 2019. Real MBSE. Manassas, VA: SPEC Innovations

Department of Defense Chief information Officer. 2009. DoD Architecture Framework Version

2.0. Washington, D.C. Department of Defense Chief Information Officer.

Friedentahl, Sanford and Roger Burkhart. 2015. Evolving SysML and the System Modeling

Environment to Support MBSE. INSIGHT, v18, n2, pp. 39-41.

Friedentahl, Sanford. Alan Moore, and Rick Steiner 2015. A Practical Guide to SysML. Boston:

MA: Morgan Kaufmann.

Hause, Matthew. 2012. UAF – Unified Profile for DoDAF/MODAF. Unpublished presentation.

International Council on Systems Engineering (INCOSE). 2007. Systems Engineering Vision

2020.

Lifecycle Modeling Language Steering Committee. 2022. Lifecycle Modeling Language (LML)

Specification. Document URL: http://www.lifecyclemodeling.org/spec/1.4.

Lifecycle Modeling Language Steering Committee. 2025 (pending). Lifecycle Modeling

Language (LML) 2.0.

Long, David and Zane Scott. 2011. A Primer for Model-based Systems Engineering (2nd

Edition). Blacksburg, VA: Vitech Corporation.

57

National Aeronautical and Space Administration, 2021. NASA Space Mission Architecture

Framework (SMAF) Handbook for Uncrewed Space Missions. NASA-HDBK-1005.

Office of Management and Budget n.d., Federal Enterprise Architecture (FEA).

https://obamawhitehouse.archives.gov/omb/e-gov/fea (Accessed April 5, 2024)

Object Management Group (OMG). 2012. OMG Systems Modeling Language (OMG SysML).

www.omg.org/spec.SysML /20120401’SysML.xm1.

Object Management Group (OMG), 2019. Unified Architecture Framework Traceability

Version 1.1.

Object Management Group (OMG), 2020. Unified Architecture Framework Version 1.1.

Object Management Group (OMG). 2014. OMG Unified Modeling Language (OMG UML).

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

Object Management Group (OMG). 2023.. Kernel Modeling Language.

https://www.omg.org/spec/KerML/1.0/Beta1/About-KerML

Office of the Deputy Assistant Secretary of Defense for Systems Engineering (DASD SE). 2018,

June. “Department of Defense Digital Engineering Strategy.” Department of Defense.

SEBoK. n.d. Complexity. https://sebokwiki.org/wiki/Complexity (accessed December 4, 2024).

Vaneman, Warren K. 2016. Enhancing Model-Based Systems Engineering with the Lifecycle

Modeling Language. Orlando, FL: Proceedings of the10th Annual IEEE Systems

Conference.

Vaneman, Warren K. 2018. Evolving Model-Based Systems Engineering Ontologies and

Structures. Washington, D.C.: Proceedings of the29th Annual INCOSE International

Symposium.

Vaneman, Warren K. and Ronald Carlson. 2018. Managing Complex Systems Engineering and

Acquisition Through Lead Systems Integration. Monterey, CA: Naval Postgraduate

School. NPS-AM-19-008.

Vaneman, Warren K., Ronald R. Carlson, and Gary W. Parker. 2021. Model Based Systems

Engineering Tool Study Report. Monterey, CA: Naval Postgraduate School.

Unpublished technical report.

Vaneman, Warren K., Steven Dam, and Jerry Sellers. 2019. Essential LML: a Thinking Tool for

Capturing, Connecting and Communicating Complex Systems.

Vaneman, Warren K., Corina White, Ronald r. Carlson, Christopher Wolfgeher, Christopher

Ritter, Geraldo Rodriguez Melo, Henry Sulca. 2023. Implementing A Model-Based

https://obamawhitehouse.archives.gov/omb/e-gov/fea
http://www.omg.org/spec.SysML%20/20120401'SysML.xm1
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
https://www.omg.org/spec/KerML/1.0/Beta1/About-KerML

58

Systems Engineering Land Construct for the Marine Corps. Monterey, CA: Naval

Postgraduate School. NPS-SE-23-004.

Wikipedia n.d . Booch Method. https://en.wikipedia.org/wiki/Booch_method Accessed March

28, 2024)

Zachman, John A. 2008. The Concise definition of the Zachman Framework. Zachman

International, Inc. https://www.zachman.com/about-the-zachman-framework. (Accessed

Feb 28, 2019)

Zachman, John A. n.d. About the Zachman Framework. Zachman International, Inc.

https://www.zachman.com/about-the-zachman-framework. (Accessed Aug 14, 2023)

https://www.zachman.com/about-the-zachman-framework
https://www.zachman.com/about-the-zachman-framework

59

MEET THE AUTHOR

Dr. Warren Vaneman is an Expert Systems Engineering Professional, certified by the International

Council on Systems Engineering (INCOSE), who serves as Professor of Practice in the Systems

Engineering Department at the Naval Postgraduate School, Monterey, CA, since 2012, and as an

Adjunct Professor at Virginia Tech, Blacksburg, VA, since 2007. He has four decades of leadership

and technical positions within the U.S. Navy and the Intelligence Community. Dr. Vaneman conducts

research and teaches courses in systems engineering, Model-Based Systems Engineering (MBSE),

Systems Architecting, and Systems of Systems Engineering and Integration. Prior to joining NPS, Dr.

Vaneman held various systems engineering positions within the Intelligence Community, including

Chief, Architecture Analysis Division, and Chief Architect of the Enterprise Ground Architecture at

the National Reconnaissance Office (NRO), and Lead Systems Engineer for Modeling and Simulation

at the National-Geospatial Intelligence Agency (NGA).

Dr. Vaneman is also a Retired Navy Reserve Captain, where he qualified as a Surface Warfare Officer,

Information Dominance Warfare Officer, and Space Cadre Expert. He served as the navigator of a

guided missile cruiser during Desert Storm, NRO Liaison to U.S. Pacific Command, Flag Advisor

for Systems and Space Engineering for the Space and Naval Warfare Systems Command Chief

Engineer, and had the honor of six command tours, including a command tour in Afghanistan during

Operation Enduring Freedom, and as the Commanding Officer, and Deputy Director for Intelligence

at U.S. Fleet Forces Command.

Dr. Vaneman has a B.S. in Meteorology and Oceanography from the State University of New York

Maritime College, an M.S. in Systems Engineering and a Ph.D. in Industrial and Systems Engineering

from Virginia Tech, and a Joint Professional Military Education Phase 1 Certificate from the Naval

War College. He is the recipient of several engineering and academic awards and honors including the

Virginia Tech Outstanding Dissertation Award (2003) and induction into the Virginia Tech Industrial

and Systems Engineering Department’s Academy of Distinguished Alumni (2019). Dr. Vaneman is a

proudly decorated Naval Officer with 15 personal awards including two Legions of Merit.

