

Lifecycle Modeling Language (LML)
Version 2.0

Document URL: https://www.lifecyclemodeling.org/spec/2.0

Current Document URL: https://www.lifecyclemodeling.org/spec/current

April 23, 2025

https://www.lifecyclemodeling.org/spec/2.0
https://www.lifecyclemodeling.org/spec/current

LML Specification 2.0
April 23, 2025

 ii

Table of Contents

1. Specification Information ... 2

1.1 Purpose of this Specification ...3

1.2 LML Steering Committee ...3

1.3 Documentation Conventions & Terminology ...3

1.4 Changes from Version 1.4 to Version 2.0 ...3

2 ERA Fundamentals .. 4

2.1 Entity Classes (noun) ...4

2.2 Entity Class Attribute (adjective) ...4

2.3 Entity Class Relationships (verb) ..5

2.4 Attributes on Relationships (adverb) ...5

2.5 Attribute Data Types ...6
2.5.1 Big_Text .. 6
2.5.2 Boolean ... 6
2.5.3 Computable .. 6
2.5.4 DateTime .. 6
2.5.5 Duration .. 6
2.5.6 Enumeration ... 6
2.5.7 Equation ... 7
2.5.8 File .. 7
2.5.9 GeoPoint ... 7
2.5.10 HTML .. 7
2.5.11 Multiplicity.. 7
2.5.12 Multiselect .. 7
2.5.13 Number... 7
2.5.14 Percent ... 7
2.5.15 Quality .. 7
2.5.16 Text ... 7
2.5.17 URI .. 7
2.5.18 User_Team ... 8

2.6 Class Inheritance...8

2.7 Extensions ..8

2.8 Implementation ..8

3 LML Semantic Ontology .. 9

3.1 LML Classes .. 10

3.2 LML Relationships ... 12

3.3 Traceability... 14

LML Specification 2.0
April 23, 2025

iii

3.4 Class Specifications ... 14
3.4.0.1 Common Attributes ... 14
3.4.0.2 Common Relationships ... 15
3.4.1 Action ... 17
3.4.2 Artifact .. 22
3.4.3 Asset ... 23
3.4.4 Characteristic .. 25
3.4.5 Connection (Abstract Class) ... 27
3.4.6 Cost ... 30
3.4.7 Decision .. 31
3.4.8 Input/Output .. 33
3.4.9 Location (Abstract Class) .. 34
3.4.10 Risk ... 38
3.4.11 Statement ... 39
3.4.12 Time .. 41

4 Visualizations ... 42

4.1 Action Diagram (Mandatory for Action entities with children).. 43

4.2 Asset Diagram (Mandatory for Asset entities with children) ... 45

4.3 Spider Diagram (Mandatory for Traceability) ... 46

4.4 Interface Control Diagram (Mandatory) ... 47

4.5 Example Views for Other LML Entities ... 49
4.5.1 Class Diagram ... 49
4.5.2 ERAA Diagram ... 49
4.5.3 Timelines .. 50
4.5.4 Hierarchy Diagram .. 51
4.5.5 Risk Matrix .. 52
4.5.6 State Machine Diagram .. 53

Appendix A. SysML v1.X Mapping to LML ... 55

Appendix B. DoDAF MetaModel 2.0.1 (DM2) Mapping to LML .. 61

Appendix C. UAF Diagram Framework.. 63

Appendix D. Structuring Artifacts ... 64

Appendix E. Application Programming Interfaces ... 66

LML Specification 2.0
April 23, 2025

1

LML specification 2.0
The purpose of LML specification is to convey the foundational structure of the language

and the specific entity classes, entity class relationships, and entity class and relationship

attributes that are available to the language user. LML version 2.0 was developed to take

advantage of the evolution of the language that has occurred during the version 1.4

releases of the specification. In particular, a number of extensions to the base language

have been proposed and proven over time. The entity class extens ions (trial

specifications) for Verification Validation (VV), Program Management, and Interfaces

have demonstrated value to enhance users Data -Driven Systems Engineering (DDSE)

capability so those entity class extension specifications have been promoted f rom the

LML Appendices into the main body of the LML Specification. These changes have

resulted in three (3) new entity subclasses, a new type of Artifact (Test Suite), and a new

diagram type (Interface Control Diagram).

LML Specification 2.0
April 23, 2025

2

1. Specification Information
Current Systems Engineering modeling languages tend to add complexity to already complex problems,

thus making it more difficult to communicate. LML was designed as a simpler language, both in its

semantic ontology and visual expressions. This feature makes it easy to understand by all stakeholders

throughout the lifecycle. Such a simplified language may not include every “bin” of information needed

for a particular domain, which is why LML is extendable by the practitioner.

As Information Technology continues to evolve, systems have become more complex and change more

rapidly than ever before. When coupled with ever tightening budgets and schedules the future becomes

even more challenging for the modern system engineer. Development of new systems requires:

• plans that are nimble and responsive to change,

• designs that are easy to understand for all stakeholders,

• architectures that are easy to modify,

• processes that support all stages of the system lifecycle,

• provides an actionable interface into artificial intelligence (AI).

Systems engineering approaches, methods and tools have evolved, but they have not kept pace with the

rate of change in modern systems. Model Based Systems Engineering (MBSE) has made tremendous

steps forward but does not address the entire challenge. Large portions of the development lifecycle are

ignored by the languages in current use. A new approach to analyzing, planning, specifying, designing,

building and maintaining modern systems is needed. The Lifecycle Modeling Language (LML) is that

approach.

LML was designed with six major goals:

• To be easy to understand

• To be easy to extend

• To support both functional and object-oriented approaches within the same design

• To be a language that can be understood by most system stakeholders, not just Systems

Engineers

• To support systems from cradle to grave

• To support both evolutionary and revolutionary changes to system plans and designs over a

system’s lifecycle.

Most systems engineers recognize that MBSE’s ability to evolve, reuse and execute models is a

significant improvement over the "document-based" static view of a system. Good models can bridge

the gap between written requirements and bending metal or writing code, the thing that is desired

versus the thing that is delivered.

LML takes the principles of MBSE beyond development and production and into the conceptual,

utilization, support and retirement stages. It provides a robust, easy to understand ontology that allows

you to model complex interrelationships between system components and programmatic artifacts, as

well as express system information using easy to understand diagrams. “LML was designed to integrate

all lifecycle disciplines, such as program management, systems engineering, testing, deployment and

maintenance, into a single language. As a result, LML can be used throughout the lifecycle. LML's entity,

LML Specification 2.0
April 23, 2025

3

relationship, and attribute modeling language elements draw from words common to the SE and PM

disciplines. Its primary modeling constructs are the box, a modeled element (entity instance), and the

directed arrow which represents a relationship between modeled elements. This means that everyone

from the least technical stakeholder to most highly skilled end users can model and understand systems

using LML It enables easy communication between disparate disciplines across multiple industries.

1.1. Purpose of this Specification
The purpose of LML specification is to convey the foundational structure of the language and the

specific entity classes, entity class relationships, and entity class and relationship attributes that are

available to the language user.

1.2. LML Steering Committee
The direction and evolution of this standard is overseen by the LML Steering Committee, which is a

committee under the Lifecycle Modeling Organization (LMO). It consists of expert systems engineers and

program managers from industry, government, and academia. Their goal is to ensure LML evolves in

such a way that it continues to meet the needs of its users. You may provide comments and suggestions

on the LML website (www.lifecyclemodeling.org).

1.3. Documentation Conventions & Terminology
LML is a set of information based on the classic Entity-Relationship-Attribute (ERA) model. An entity is a

distinct class of information. An entity instance is an element defined using an entity class. A

relationship specifies a possible link between two or more classes of entities. An attribute is used to

describe a property of an entity class or a relationship.

When referencing an entity class, outside of the LML specification heading, the class name is always in

bold with the first letter capitalized, as in Action.

When referencing an attribute, outside of a LML specification heading, the attribute name is always in

italics with the first letter lower case, as in control.

When referencing a relationship, outside of a LML specification heading, the relationship name is always

in bold italics with the first letter lower case, as in traced to.

When clarifying the context for an attribute, the entity class name should be appended to the end of the

attribute name as follows: “(Class Name)”; where “Class Name” would be the name of the class of

entities. For example: units (Characteristic) and units (Cost), which clarifies the difference between the

units attribute of the Characteristic entity and the units attribute of the Cost Class.

When referencing an attribute on a relationship, outside of a LML specification heading, the attribute

name is always underlined with the first letter lower case, as in trigger.

1.4. Changes from Version 1.4 to Version 2.0
LML version 2.0 was developed to take advantage of the evolution of the language that has occurred

during the version 1.4 releases of the specification. In particular, a number of extensions to the base

language have been proposed and proven over time. The entity class extensions (trial specifications) for

Verification & Validation (V&V), Program Management, and Interfaces have demonstrated value to

http://www.lifecyclemodeling.org/

LML Specification 2.0
April 23, 2025

4

enhance users Data-Driven Systems Engineering (DDSE) capability so those entity class extension

specifications have been promoted from the LML Appendices into the main body of the LML

Specification.

These changes have resulted in three (3) new entity subclasses, a new type of Artifact (Test Suite), and a

new diagram type (Interface Control Diagram).

2. ERA Fundamentals
LML is an instance of the classic ERA metamodel, with the addition of including attributes on

relationships. LML elements correspond to classes (class of entity type), relations (relationship), and

properties (attribute) in other object-oriented languages.

This section defines the ERAs for LML, thus providing the basic definitions of the data types used to

collect information about the system1. Furthermore, we describe how inheritance, extensions,

limitations and instantiation can be used by tool developers to remain within the guidelines of this

standard.

Entity, relationship and attribute have equivalent English language elements: noun, verb, and adjective.

With the addition of attributes on the relationship, we also have the equivalent of the adverb. These

equivalencies are provided to help explain the semantics of the language.

2.1. Entity Classes (noun)
LML defines 12 parent classes (Action, Artifact, Asset, Characteristic, Connection, Cost, Decision,

Input/Output, Location, Risk, Statement and Time). The rationale for this set is presented in Section 3.

Several child classes have also been defined as they have specific utility in capturing the information

needed by the system lifecycle stakeholders. These child classes inherit the attributes and relationships

from their parents, and possess additional attributes and/or relationships that make them unique. More

on this “inheritance” of attributes and relationships is discussed in section 2.6.

Every LML entity class has name, number, and description attributes. Every LML entity instance must

have a name or number populated to identify it. The name is a word or small collection of words to

represent the entity instance. The number provides an alpha-numeric way to identify the entity for the

users. The description provides more detail about that entity instance.

An optional vendor implementation of LML may choose to define a universally unique identifier (UUID)

or other identifiers as a means to uniquely identify the entity instance.

2.2. Entity Class Attribute (adjective)
Every entity class possesses a set of attributes that represent its properties. These attributes further

describe the class, enhancing its uniqueness. Every attribute must have a name to identify it uniquely

within an class. The name is one word or a few words to succinctly identify the attribute. The attribute

data type (see 2.5 below) specifies the type of data associated with the attribute.

1 1INCOSE defines a system as a “combination of interacting elements organized to achieve one or more stated
purposes.”

LML Specification 2.0
April 23, 2025

5

Attribute names must be unique within a class, but may be used in other classes, such as the following

example: units (Characteristic) and units (Cost).

2.3. Entity Class Relationships (verb)
A relationship connects entity classes to each other. In LML, all relations shall be defined in both

directions and shall have unique names with the same verb. For example, the standard parent child

relationship (used by all LML classes) is decomposed by and its inverse is decomposes. The relationship

names were selected to enable an English reading of the way entities connect. For example, when

connecting an Action to a Statement, LML uses traced from as the relationship: an Action is traced from

a Statement. The inverse relation of traced from is traced to, and thus would be read as: a Statement is

traced to an Action. Figure 2-1 shows an Entity-Relationship Diagram (ERD) that illustrates this example.

Figure 2-1. Entity-Relationship Diagram for the Relationship Between an Action and a Statement.

For relationships within the same entity, such as decomposed by and decomposes can be visualized as

an ERD as well (see Figure 2-2).

Figure 2-2. Entity-Relationship Diagram for the Relationship Between an Action and Itself.

2.4. Attributes on Relationships (adverb)
The classic ERA modeling does not include attributes on relationships. However, this addition is useful

for LML. However, this addition is useful for LML to convey additional information about a relationship

instance. It can be used to query certain relationships in their model as well. This addition of the

"adverb" provides a more efficient way to express relational information.

Figure 2-3 shows an example of how the attribute on a relationship is depicted in an extended version of

the ERD. The attribute on a relationship is shown with a dashed line to the relationship. The attribute on

a relationship shall have a unique name for that relationship, but can be used in other relationships, if

necessary to enhance communication.

LML Specification 2.0
April 23, 2025

6

Figure 2-3. Extended Entity Relationship Diagram for the Attribute on the Relationship Between an Action and

an Input/Output.

2.5. Attribute Data Types
For a complete specification, defining which data types are appropriate for the attributes is

indispensable. This is because they can vary significantly, and because specification interoperability with

other schemas (i.e., translations) would be exceptionally difficult without this. The following subsections

present the current acceptable set of attribute data types for LML. Extensions (see Section 2.7) may also

extend this list of data types.

2.5.1. Big_Text
A string of Rich Text characters up to 65,536 characters in length.

2.5.2. Boolean
Data that can have one of two values, including "true" and "false"

2.5.3. Computable
Data representing a mathematical formula, using a common language such as LaTeX, that can be used to

visualize the equation and calculate values.

2.5.4. DateTime
Data representing a date and time value. Commonly stored as “YYYY-MM-dd hh:mm:ss”. Where “YYYY”

is the four digit year, “MM” is the two digit month, “dd” is the two digit day, “hh” is the two digit hour

(in twenty-four hours), “mm” is the two digit minute, and “ss” is the two digit second.

2.5.5. Duration
Data that is a special case of Number where the value will be assigned units of "seconds", "minutes",

"hours", "days", "months" or "years".

2.5.6. Enumeration
Data representing a choice from set of defined options, where the selection of only one option is

permitted. An enumeration must contain a minimum of two options. An Enumeration will be

implemented as either a Text or a Number data type, depending on the character content of the

options. All options within the set must be of the same data type (having a set containing both Text data

type and Number data type is not permitted). Also, within a set, a repeated option is not permitted (A

set cannot have repeated “Apple” as in: “Apple”, “Orange”, “Apple”, and “Plum”).

LML Specification 2.0
April 23, 2025

7

2.5.7. Equation
Data representing a mathematical formula, using a common language such as LaTeX, that can be used to

visualize the equation in normal mathematical form.

2.5.8. File
Data representing an uploaded file that contains information in other formats, such as .pdf, .docx, .stl,

etc.

2.5.9. GeoPoint
Data representing a longitude and latitude pair on the surface of a body.

2.5.10. HTML
A string of ASCII characters where the value may contain HTML tags. The text will be displayed according

to the HTML standard. The string may be up to 65,536 characters in length.

2.5.11. Multiplicity
Data representing the potential range of the number of items that can be associated with a specific

entity. Integers from 1 to n.

2.5.12. Multiselect
Data representing choices made from set of defined options, where the selection of one or more

options is permitted. A multiselect must contain a minimum of two options. A Multiselect will be

implemented as either a Text or a Number data type, depending on the character content of the

options. All options within the set must be of the same data type (having a set containing both Text data

type and Number data type is not permitted). Also, within a set, a repeated option is not permitted (A

set cannot have repeated “Apple” as in: “Apple”, “Orange”, “Apple”, and “Plum”).

2.5.13. Number
Data representing any real number. This number can be represented by a distribution as well.

2.5.14. Percent
Data that is a special case of Number where the value is restricted to values between zero and one

hundred.

2.5.15. Quality
Data representing the quality (the goodness) of an entity. For example, the quality of a requirement may

have a number of factors, such as Appropriate, Complete, Correct, etc.

2.5.16. Text
A string of ASCII characters, such as a single character, a word, or multiple words up to 256 characters in

length.

2.5.17. URI
A special case of Text where the value must be a Uniform Resource Identifier. Examples of URI:

“C:/Program Files”, “http://www.google.com”, and “test@test.com”.

LML Specification 2.0
April 23, 2025

8

2.5.18. User_Team
Data representing the names (or usernames) of individuals assigned to a project.

2.6. Class Inheritance
With LML it is possible to create child classes. The child class inherits all the attributes and relationships

from the parent class with the EXCEPTION of the class designation, which is overridden by the child class

designation. Further, the child class will add additional attributes and/or possible relationship types.

A Resource class is an example of a child class to the Asset class. Providing a metaphor, consider that in

the natural world there exists;a class of animal called a "Kangaroo" that inherits attributes from the

Mammal class. The "Kangaroo" class is a child class to the Mammal class. The Kangaroo is a mammal

with more attributes and added relationship types.

2.7. Extensions
There may be a need to capture other kinds of information than those defined in LML. There might be a

need to add attributes and relationships to existing entity classes or you may want to add new entity

classes or subclasses to LML. New entity classes or subclasses are recommended only when new

attributes and/or relationships are needed to separate the new entity class or subclass from existing

entity classes or subclasses. Extensions for domain-specific needs are allowed and encouraged when

necessary.

It is strongly recommended that users avoid simply creating a new entity class, when it is really only a

“type” of an existing entity class. For example, a type of Requirement might be a performance or safety

requirement. If no new attributes or relationships are needed for the performance or safety

requirement, they should be types of the Requirement. Tool developers may want to display the entity

type, rather than the entity class name, to enhance the communication with these other languages.

They may also implement types as labels, instead of attributes.

Note as mentioned in 2.6, types are not inherited by subclasses from the parent entity class.

The schema user can also apply a Characteristic entity class in many cases to provide “attributes” of an

Asset or Action, thus making many other extensions unnecessary. It is recommended that users explore

this option first, before creating an extension. For example, a Characteristic of "Color" (the Navy's

"paint it haze gray" requirement) could be related to an Asset, instead of adding an attribute to the

entity class.

If there are broadly valuable changes to the LML ontology, users are encouraged to submit them to the

LML Steering Committee for adjudication.

2.8. Implementation
Implementation details of the LML specification in a tool will be up to vendors so long as they maintain

compliance with this standard. If they find portions of the specification difficult to implement, they can

contact the LML Steering Committee for guidance at info@lifecyclemodeling.org. LML can easily be

accommodated in existing tools that have an open or tailorable schema. The unique diagram types:

Action Diagram and Interface Control Diagram (see Section 4) could be added to existing tools.

LML Specification 2.0
April 23, 2025

9

3. LML Semantic Ontology
Systems engineers, enterprise architects and program managers have overlapping needs for information

and LML provides a basic but comprehensive set of design elements that satisfy all of them. For

example, the systems engineer is concerned with optimizing cost, schedule and performance.

Performance includes form, fit, and function. Enterprise architects often use the “5WH” model (What,

Why, When, Where, Who, and How) to capture their information. The Program Manager is primarily

concerned with cost, schedule, tasks, resources, and risks. Table 3-1 shows these various information

needs and how LML satisfies them. Each of these entities has unique and common attributes and

relationships.

Table 3-1. Comparison Between LML and the Information Needs of Key System Lifecycle Stakeholders

This section summarizes the LML Specification's entity classes in table format, entity class relationships

in matrix format, and concludes with full entity class specification for each LML entity class.

In addition, this LML specification also defines common diagrams for visualization. Each class can use

common visualizations or the unique diagrams defined by this standard. Other visualizations are allowed

and encouraged as they aid in expressing the information, which is the real goal of any language

visualizations. These ideas can and should be proposed as extensions to the language as well so that

other practitioners can benefit from these visualizations.

Ontologies provide a set of defined terms and relationships between those terms to capture the

physical, functional, performance, and programmatic aspects of the system. By system,1 we mean the

entire set of processes, people and things which operate for the benefit of people. Common ways of

describing such ontologies is entity, relationship, and attribute (ERA). ERA is often used to define

database schemas. LML uses the ERA approach but extends it by adding attributes to relationships. The

LML Specification 2.0
April 23, 2025

10

extension reduces the number of relationships needed, just as attributes reduce the number of entities

needed.

3.1. LML Classes
Table 3-2 summarizes the LML classes, their parent class, description and examples (where appropriate)

of how they might be used. Note that these examples can be part of the type attributes and used as

aliases for the class itself.

Table 3-2. Summary of the LML Classes

Class Name Parent Class Description Examples

Action None An Action entity specifies an effort,
operation, or a process by which
inputs are transformed into outputs.

Activity, Capability, Event,
Function, Process

Artifact None An Artifact entity specifies a set or
collection of information that is
referenced by or generated from the
knowledgebase.

Document, E-mail,
Procedure, Specification

Asset None An Asset entity specifies an object,
person, or organization that
performs Actions, such as a system,
subsystem, component, or element.

Component, Entity, Service,
Sub-system, System

Characteristic None A Characteristic entity specifies
additional properties of an entity.

Attribute, Category, Power,
Role, Size, Weight, Color

Conduit Connection A Conduit entity specifies the means
for physically transporting
Input/Output entities between
Asset entities. It has limitations
(attributes) of capability and latency.

Data Bus, Interface, Pipe

Connection None A Connection entity specifies the
means for relating Asset entities to
each other.

Abstract class

Cost None A Cost entity specifies the outlay or
expenditure (as of effort or sacrifice)
made to achieve an objective
associated with another entity.

Earned Value, Work
Breakdown Structure,
Actual Cost, Planned Cost

Decision None A Decision entity specifies a choice,
a resolution, a conclusion, or a
selected option.

Major Decision, Challenge,
Issue, Problem

Dependency Connection A
Dependency
 entity specifies a connection
between two Tasks in a Gantt Chart.
It defines the relationship a Task
depends on another Task in order to
Start or Finish.

LML Specification 2.0
April 23, 2025

11

Class Name Parent Class Description Examples

Input/Output None An Input/Output entity specifies the
information, data, or object input to,
trigger, or output from an Action.

Item, Trigger, Information,
Data, Energy

Location None A Location entity specifies where an
entity resides.

Abstract entity

Logical Connection A Logical entity represents the
abstraction of the relationship
between two entities (e.g., Asset
entities with the type “Entity”)

Has, “is a”, “relates to”

Measure

Characteristic

A Measure entity specifies
properties of measurements and
measuring methodologies, including
metrics.

Key Performance Parameter
(KPP), Measure of
Effectiveness (MOE),
Measure of Performance
(MOP), Metric

Orbital Location An Orbital entity specifies a location
along an orbit around a celestial
body.

Orbit

Physical Location A Physical entity specifies a location
on, above, or below the surface.

Latitude and Longitude,
Street Address

Requirement Statement A Requirement entity identifies a
capability, characteristic, or quality
factor of a system that must exist for
the system to have value and utility
to the user.

Functional Requirement,
Performance Requirement,
Safety Requirement

Resource Asset A Resource entity specifies a
consumable or producible Asset.

Fuel, Bullets, Missiles,
People

Risk None A Risk entity specifies the combined
probability and consequence in
achieving objectives.

Cost Risk, Schedule Risk,
Technical Risk

Statement None A Statement entity specifies text
referenced by the knowledgebase
and usually contained in an Artifact.

Need, Goal, Objective,
Assumption

Task Action

A
Task
 entity specifies an
Action
 that must be completed for a
particular project. It serves as a "To-
Do" for the Project.

LML Specification 2.0
April 23, 2025

12

Class Name Parent Class Description Examples

Test Case Action A
Test Case
 entity specifies a verification or
validation task, as well as its
expected and actual results.

Verification Event,
Validation Event,
Demonstration

Time None A Time entity specifies a point or
period when something occurs or
during which an action, asset,
process, or condition exists or
continues.

Milestone, Phase

Verification
Requirement

Statement A
Verification Requirement
 entity specifies what is required to
confirm that a requirement is
satisfied.

Virtual Location A Virtual entity specifies a location
within a digital network.

URL

3.2. LML Relationships
The relationships between the classes are provided in the Table 3-3. Note that the same verb is used for

the inverse relationships.

*Implies the inverse relation is present, just not shown.

Note: This matrix does not include the extensions found in the Appendices.

LML Specification 2.0
April 23, 2025

13

Table 3-3. Summary Table of LML Relationships

LML Specification 2.0
April 23, 2025

14

3.3. Traceability
Because LML was designed to simplify tracing requirements to their implementation mechanisms (Asset

class entities), the primary path for traceability is in Figure 3-1. This diagram does not reflect all the

relationships shown in Table 3-3.

Figure 3-1. Principal Entities and Relationships for Design LML Traceability

3.4. Class Specifications
The following subsections provide the detailed entity class, relationship, attribute, and attribute on

relationship specifications for the LML ontology. These specifications will be used by language users to

provide the basis for all LML-related extensions.

3.4.0.1. Common Attributes
Name, Number and Description attributes are common to all entities.

3.4.0.1.1. name

Definition: name designates the particular instance of a class (entity).

Data Type: Text

3.4.0.1.2. number

Definition: number provides the entity’s place in a hierarchy.

Data Type: Text

3.4.0.1.3. description

Definition: description captures the text needed to describe this entity.

LML Specification 2.0
April 23, 2025

15

Data Type: Text

3.4.0.2. Common Relationships
Many relationships are common to all or almost all entity classes, including causes/caused by,

decomposes/decomposed by, enables/enabled by, incurs/incurred by, locates/located at,

mitigates/mitigated by, occurs/occurred by, references/referenced by, relates/related to,

resolves/resolved by, results in/resulted by; specifies/specified by, and traced to/traced from.

Exceptions will be noted in the specific classes.

3.4.0.2.1. causes/caused by

Definition: causes identifies the Risk resulting from this Class Entity.

Usage: Class Entity A causes Risk 1.

Inverse usage: Risk 1 is caused by Class Entity A.

3.4.0.2.2. decomposed by/decomposes

Definition: decomposed by identifies the children of this Class Entity.

Usage: Class Entity A is decomposed by Class Entity B.

Inverse usage: Class Entity B decomposes Class Entity A.

3.4.0.2.3. enables/enabled by

Definition: enables identifies the Decision that is empowered by this Class Entity.

Usage: Class Entity A enables Decision 1.

Inverse usage: Decision 1 is enabled by Class Entity A.

3.4.0.2.4. incurs/incurred by

Definition: incurs identifies the Cost value for this Class Entity.

Usage: Class Entity A incurs Cost 1.

Inverse usage: Cost 1 is incurred by Class Entity A.

3.4.0.2.5. located at/locates

Definition: located at identifies the Location where this Class Entity exists.

Usage: Class Entity A is located at Location 1.

Inverse usage: Location 1 locates Class Entity A.

3.4.0.2.6. mitigates/mitigated by

Definition: mitigates identifies the Risk that this Class Entity alleviates.

Usage: Class Entity A mitigates Risk 1.

Inverse usage: Risk 1 is mitigated by Class Entity A.

LML Specification 2.0
April 23, 2025

16

3.4.0.2.7. occurs/occurred by

Definition: occurs identifies the Time (or timespan) in which this Class Entity happens.

Usage: Class Entity A occurs at Time 1.

Inverse usage: Time 1 is occurred by Class Entity A.

3.4.0.2.8. references/referenced by

Definition: references identifies the Artifact that specifies and/or enhances the definition of this Class

Entity.

Usage: Class Entity A references Artifact 1.

Inverse usage: Artifact 1 is referenced by Class Entity A.

3.4.0.2.9. related to/relates

Definition: related to identifies the entity that ties in a peer-to-peer way with this Class Entity.

Usage: Class Entity A is related to Class Entity B.

Inverse usage: Class Entity B relates Class Entity A.

3.4.0.2.9.1. context

Definition: context represents a description of this relation.

Data Type: Text

3.4.0.2.10. resolves/resolved by

Definition: resolves identifies the Risk that is closed by this Class Entity.

Usage: Class Entity A resolves Risk 1.

Inverse usage: Risk 1 is resolved by Class Entity A.

3.4.0.2.11. results in/result of

Definition: results in identifies the Decision that is caused by this Class Entity.

Usage: Class Entity A results in Decision 1.

Inverse usage: Decision 1 is the result of Class Entity A.

3.4.0.2.12. specified by/specifies

Definition: specified by identifies a Characteristic that provides further information about this Class

Entity.

Usage: Class Entity A is specified by Characteristic 1.

Inverse usage: Characteristic 1 specifies Class Entity A.

3.4.0.2.13. traced from/traced to

Definition: traced from identifies a Statement that is accredited to this Class Entity.

LML Specification 2.0
April 23, 2025

17

Usage: Class Entity A is traced from Statement 1.

Inverse usage: Statement 1 is traced to Class Entity A.

3.4.1. Action
Definition: An Action entity generates effects and may have pre-conditions before it can be executed.

This Action can include transforming inputs into outputs.

Parent: None

Subclasses: Task, Test Case

3.4.1.1. Action Attributes

Action class entities have attributes: name, number, description, duration and type. Note: LML v1.x had

two other attributes (start and status). Those attributes have been moved to the Task subclass.

3.4.1.1.1. duration (Action)

Definition: duration represents the period of time this Action occurs. It can be represented as a floating

number or distribution.

Data Type: Number

3.4.1.1.2. type (Action)

Definition: type provides aliases for the entities. For Action these can include: Activity, Capability, Event,

Function, Mission, Operational Activity, Program, Service Orchestration, Simulation Workflow,

Subprocess, System Function, Training, Use Case, Work Process, Workflow.

Data Type: Text

3.4.1.2. Action Relationships

The additional relationships for the Action class entities are provided below. The Action class uses all the

common relationships provided in section 3.4.0.2.

3.4.1.2.1. consumes/consumed by

Definition: consumes identifies the Resource that this Action uses. After this Action is completed, the

amount consumed is not returned to the Resource.

Usage: Action A consumes Resource 1.

Inverse usage: Resource 1 is consume by Action A.

3.4.1.2.1.1. amount

Definition: amount represents how much of the resource is consumed by the Action. Units are relative

to the units selected for the Resource.

Data Type: Number

3.4.1.2.2. generates/generated by

Definition: generates identifies the Input/Output that this Action transforms.

LML Specification 2.0
April 23, 2025

18

Usage: Action A generates Input/Output 1.

Inverse usage: Input/Output 1 is generated by Action A.

3.4.1.2.3. performed by/performs

Definition: performed by identifies the Asset that executes this Action.

Usage: Action A is performed by Asset 1.

Inverse usage: Asset 1 performs Action A.

3.4.1.2.4. receives/received by

Definition: receives identifies the Input/Output that is taken in by this Action.

Usage: Action A receives Input/Output 1.

Inverse usage: Input/Output 1 is received by Action A.

3.4.1.2.4.1. trigger

Definition: trigger represents this relation as an enabling requirement for the Action. An Action begins

execution when it has received control enablement, all of its triggers have arrived, and its necessary

resources are available.

Data Type: Boolean

3.4.1.2.5. seizes/seized by

Definition: seizes identifies the Resource that this Action uses. After this Action has completed the

Resource is released for use by other Actions.

Usage: Action A seizes Resource 1.

Inverse usage: Resource 1 is seized by Action A.

3.4.1.2.5.1. amount

Definition: amount represents how much of the resource is captured by the Action. Units are relative to

the units selected for the Resource.

Data Type: Number

3.4.1.3. Task (Action)

Definition: A Task entity specifies an activity that must be completed for a particular project. It serves as

a "To-Do" for the Project.

Parent Class: Action

3.4.1.3.1. Task Attributes

Task attributes include: name, number, description, duration, date due, estimated date of completion,

finish, percent complete, planned start, priority, start, status, and type.

LML Specification 2.0
April 23, 2025

19

3.4.1.3.1.1. date due

Definition: Date and Time the Task is required to be completed.

Data Type: DateTime

3.4.1.3.1.2. estimated date of completion

Definition: Date and time the Task is expected to be completed.

Data Type: DateTime

3.4.1.3.1.3. finish

Definition: Date and time the Task is actually finished.

Data Type: DateTime

3.4.1.3.1.4. percent complete

Definition: percent complete represents the percentage this Task is complete.

Data Type: Percent

3.4.1.3.1.5. planned start

Definition: Date and Time the Task is (or was) planned to begin.

Data Type: DateTime

3.4.1.3.1.6. priority

Definition: priority identifies the level of urgency for Task completion. Values of: Low Priority, Medium

Priority, High Priority.

Data Type: Enumeration

3.4.1.3.1.7. start

Definition: start represents the actual date and time when this Task begins.

Data Type: DateTime

3.4.1.3.1.8. status

Definition: Open; In Progress; in Review; Closed.

Data Type: Enumeration

3.4.1.3.1.9. type (Task)

Definition: Work Package; Step; Milestone; Schedule Activity; Baseline; Forecast; Kanban Board; Gantt

Chart.

Data Type: Enumeration

LML Specification 2.0
April 23, 2025

20

3.4.1.3.2. Task Relationships

The additional relationships for the Task class entities are provided below. The Task class uses all the

common relationships provided in section 3.4.0.2 and the additional Action relationships from section

3.4.1.2.

3.4.1.3.2.1. depends on/has dependent

Definition: depends on identifies the Dependency (a subclass of Connection) between two Tasks.

Usage: Task A depends on Task B.

Inverse usage: Task B has dependent Task A.

3.4.1.3.2.2. scheduled by/schedules

Definition: scheduled by identifies a Kanban Column (Time entity) that a Task is planned to take place

within.

Usage: Task A is scheduled by Time 1.

Inverse usage: Time 1 schedules Action A.

3.4.1.3.2.3. tracked by/tracks

Definition: tracked by identifies Task entity associated with the Time entity that represent the Kanban

Board Columns.

Usage: Task A i s tracked by Time 1 .

Inverse usage: Time 1 tracks Task A.

3.4.1.4. Test Case (Action)

Definition: A Test Case entity specifies a verification/validation task, as well as its expected and actual

results.

Parent Class: Action

3.4.1.4.1. Test Case Attributes

Test Case attributes include: name, number, description, duration, actual result, expected result, event

conditions, event constraints, status, setup, and type.

3.4.1.4.1.1. Actual Result

Definition: actual result summarizes the recorded results of the V&V task.

Data Type: Text

3.4.1.4.1.2. Expected Result

Definition: expected result summarizes the predicted results of the V&V task.

Data Type: Text

LML Specification 2.0
April 23, 2025

21

3.4.1.4.1.3. Event Conditions

Definition: event conditions specifies conditions and setup details to be used during the test. Conditions

might specify parameters that simulate scenarios or physical analogs of processed materials.

Data Type: Text

3.4.1.4.1.4. Event Constraints

Definition: event constraints capture information that impose constraints on verification events, such as

the need for independent verification, witness points, etc. Constraints might also indicate sampling

requirements.

Data Type: Text

3.4.1.4.1.5. Status

Definition: status provides the state of the V&V task. Suggested values are: “Not Run,” “In Progress,”

“Blocked,” “Failed,” and “Passed”

Data Type: Enumeration

3.4.1.4.1.6. Setup

Definition: setup details steps required prior to conducting the V&V task. setup details might require

specific HWIL, SWIL, or surrogate input streams.

Data Type: Text

3.4.1.4.1.7. Type (Test Case)

3.4.1.4.2. Test Case Relationships

The additional relationships for the Test Case class entities are provided below. The Test Case class uses

all the common relationships provided in section 3.4.0.2 and the additional Action relationships from

section 3.4.1.2.

Special cases for references/referenced by and traced from/traced to are provided below.

3.4.1.4.2.1. evaluates/evaluated by

Definition: A verification event evaluates an Asset entity included in the event.

Usage: Test Case A evaluates Asset 1.

Inverse usage: Asset 1 is evaluated by Test Case A.

3.4.1.4.2.2. references/referenced by

Definition: references the Test Suite (a type of Artifact) that provides the container for the top level Test

Cases.

Usage: Test Case A references Test Suite (type of Artifact) 1.

Inverse usage: Test Suite 1 is referenced by Test Case A.

LML Specification 2.0
April 23, 2025

22

3.4.1.4.2.3. traced from/traced to

Definition: A verification event (Test Case) is traced from a Verification Requirement

Usage: Test Case A is traced from Verification Requirement 1.

Inverse usage: Verification Requirement 1 is traced to Test Case A.

3.4.2. Artifact
Definition: An Artifact entity specifies a document or other source of information that is referenced by

or generated in the knowledgebase. Example: Requirements Report.

Parent: None

3.4.2.1. Artifact Attributes

Artifact class entities have attributes: name, number, description, date published, file, and type.

3.4.2.1.1. date published

Definition: date published represents the date when this Artifact was accessed (webpage), published, or

uploaded to the knowledgebase.

Data Type: Date/Time

3.4.2.1.2. file

Definition: The file that represents this Artifact.

Data Type: URI

3.4.2.1.3. type

Definition: type provides aliases for the entities. For Artifact these can include: Briefing, Change Notice,

Change Request, Concept of Operations, Directive, Doctrine, Document, E-Mail, Guidance, Instruction,

Interface Control Document, Interface Requirements Specification, Manual, Matrix, Meeting Minutes,

Memorandum, Mitigation Plan, Model, Operational Concept, Policy, Procedure, Protocol, Proposal,

Regulation, Requirements Document, Request for Proposals, Software Requirements Specification,

Standard, System Requirements Document, System/Segment Design Document, System/Segment

Specification, Test & Evaluation Plan, Test & Evaluation Report, Test Suite, Text Message, Trade Study,

White Paper

Data Type: Text

3.4.2.2. Artifact Relationships

The additional relationships for the Artifact class entities are provided below. The Artifact class uses all

the common relationships provided in section 3.4.0.2.

3.4.2.2.1. defines protocol for/defined protocol by

Definition: defines protocol for identifies the Conduit that uses the standard identified in this Artifact.

Usage: Artifact A defines protocol for Conduit 1.

Inverse Usage: Conduit 1 has a defined protocol by Artifact A.

LML Specification 2.0
April 23, 2025

23

3.4.2.2.2. source of/sourced by

Definition: source of identifies the Statement that is contained in this Artifact.

Usage: Artifact A is the source of Statement 1.

Inverse Usage: Statement 1 is sourced by Artifact A.

3.4.3. Asset
Definition: An Asset entity specifies an object, person, or organization that used to create value and

perform Actions, such as a system, subsystem, component, or element.

Examples: Infrared Sensor, Accounting Department, Internal Revenue Service

Parent: None

Subclasses: Resource

3.4.3.1. Asset Attributes

Asset class entities have attributes: name, number, description, and type.

3.4.3.1.1. type

Definition: type provides aliases for the entities. For Asset these can include: Architecture, Assembly,

Component, Context, CSC, CSCI, CSU, Element, Environment, External System, Facility, Hardware,

Human, HW Element, HWCI, Infrastructure, LRU, Materiale, Operational Element, Organization, Part,

Performer, Personnel, Segment, Service, Software, Subassembly, Subsystem, System, System

Instantiation, Test Equipment, Test Software, Unit

Data Type: Text

3.4.3.2. Asset Relationships

The additional relationships for the Asset class entities are provided below. The Asset class uses all the

common relationships provided in section 3.4.0.2.

3.4.3.2.1. connected by/connects to

Definition: connected by identifies the Connection that adjoins this Asset. Note: Connection is an

abstract class. It has subclasses of Conduit and Logical.

Usage: Asset A is connected by Connection 1.

Inverse Usage: Connection 1 connects to Asset A.

3.4.3.2.2. orbited by/orbits

Definition: orbited by identifies the Asset entity that acts as a satellite to this Asset entity.

Usage: Asset A is orbited by Asset B

Inverse Usage: Asset B orbits Asset A.

3.4.3.3. Resource (Asset)

Definition: A Resource entity specifies a consumable or producible Asset.

LML Specification 2.0
April 23, 2025

24

Example: $5, 2 kilowatts, natural gas.

All attributes and relationships from Asset are inherited by the Resource entities.

3.4.3.3.1. Resource Attributes

Resource attributes include: name, number, description, initial amount, maximum amount, minimum

amount, units, and type.

3.4.3.3.1.1. initial amount

Definition: initial amount represents this Resource's starting amount.

Data Type: Number

3.4.3.3.1.2. maximum amount

Definition: maximum amount represents this Resource's maximum amount allowed.

Data Type: Number

3.4.3.3.1.3. minimum amount

Definition: minimum amount represents this Resource's minimum amount allowed.

Data Type: Number

3.4.3.3.1.4. units

Definition: units represents this Resource's units used to measure the amounts, such as each or tons.

Data Type: Text

3.4.3.3.1.5. type

Definition: type provides aliases for the entities. For Resource these can include: Computer Resource,

Human Resource, Fuel

Data Type: Text

3.4.3.3.2. Resource Relationships

The additional relationships for the Resource class entities are provided below. The Resource class uses

all the common relationships provided in section 3.4.0.2 and the additional Asset relationships from

section 3.4.3.2.

3.4.3.3.2.1. consumed by/consumes

Definition: consumed by identifies the Action that uses this Resource. After the Action is completed, the

amount consumed is not returned to the Resource.

Usage: Resource A is consume by Action 1.

Inverse usage: Action 1 consumes Resource A.

LML Specification 2.0
April 23, 2025

25

3.4.3.3.2.1.1. amount attribute

Definition: amount represents how much of the resource is consumed by the Action. Units are relative

to the units selected for the Resource.

Data Type: Number

3.4.3.3.2.2. produced by/produces

Definition: produced by identifies the Action that creates this Resource. Resources are produced when

the execution of the action completes.

Usage: Resource A is produced by Action 1.

Inverse usage: Action 1 produces Resource A.

3.4.3.3.2.2.1. amount

Definition: amount represents how much of the Resource is produced by the Action. Units are relative

to the units selected for the Resource.

Data Type: Number

3.4.3.3.2.3. seizes/seized by

Definition: seized by identifies the Action that uses this Resource. After the Action has completed, this

Resource is released for use by other Actions.

Usage: Resource A is seized by Action 1.

Inverse usage: Action 1 seizes Resource A.

3.4.3.3.2.3.1. amount

Definition: amount represents how much of the resource is captured by the Action. Units are relative to

the units selected for the Resource.

Data Type: Number

3.4.4. Characteristic
Definition: A Characteristic entity specifies or captures properties of an entity.

Examples: Blue, no heavier than 2 oz, accurate to within 1%.

3.4.4.1. Characteristic Attributes

Characteristic attributes include: name, number, description, type, units, value, formatted equation, and

computed value.

3.4.4.1.1. type

Definition: type provides aliases for the entities. For Characteristic these can include: Condition, Data

Element, Environmental, Functional, Performance, Physical, Scenario, Security, Verification Category

Data Type: Text

LML Specification 2.0
April 23, 2025

26

3.4.4.1.2. units

Definition: units represents this Characteristic’s units used to measure the value, such as pounds or

miles per hour.

Data Type: Text

3.4.4.1.3. value

Definition: value represents this Characteristic’s current value.

Data Type: Text

3.4.4.1.4. formatted equation (optional)

Definition: formatted equation provides a visual representation of a mathematical equation using LaTeX

to specify the equation.

Data Type: Equation

3.4.4.1.5. computed value (optional)

Definition: computed value provides a calculation of a mathematical equation using LaTeX to specify the

equation. Variables values are specified using numerical attributes of other classes.

Data Type: Computable

3.4.4.2. Characteristic Relationships

 There are no additional relationships for the Characteristic class entities. The Characteristic class uses

all the common relationships provided in section 3.4.0.2.

3.4.4.3. Measure (Characteristic)

Definition: A Measure entity specifies the set of measurements used to provide managers, system

developers, and systems engineers with insight into the system definition, and the analysis of technical

solutions with respect to performance, cost, and risk.

Examples: 19 inches, 22 grams, 1.21 gigawatts

All attributes and relationships from Characteristic are inherited by the Measure entities.

3.4.4.3.1. Measure Attributes

Measure attributes include: name, number, description, improvement direction, objective value,

projected value, threshold value, tolerance, type, units, and value.

3.4.4.3.1.1. improvement direction

Definition: improvement direction represents the direction in which metric improvement occurs. It is the

direction from the threshold value to the objective value.

Data Type: Enumeration [N/A, Positive, Negative]

3.4.4.3.1.2. objective value

Definition: objective value represents the goal for this Measure.

LML Specification 2.0
April 23, 2025

27

Data Type: Text

3.4.4.3.1.3. projected value

Definition: projected value represents this Measure's expected value to be achieved with existing

resources.

Data Type: Text

3.4.4.3.1.4. threshold value

Definition: threshold value represents the minimum acceptable value for this Measure.

Data Type: Text

3.4.4.3.1.5. tolerance

Definition: tolerance represents the percentage of the value that forms the positive and negative

tolerance bands. tolerance is used when value represents the planned measure value at a given time.

Data Type: Text

3.4.4.3.1.6. type

Definition: type provides aliases for the entities. For Measure these can include: Critical Operational

Issue (COI), Key Performance Parameter (KPP), Mean Time Between Failures (MTBF), Measure of

Effectiveness (MOE), Measure of Performance (MOP), Metric, Technical Performance Measure (TPM).

Data Type: Text

3.4.4.3.2. Measure Relationships

No additional relationships from those inherited from the Characteristic parent class.

3.4.5. Connection (Abstract Class)
Definition: A Connection entity specifies the mechanism relating other classes to each other through a

class entity. This is an abstract class.

3.4.5.1. Connection Attributes

No additional attributes are contained in the Connection abstract class.

3.4.5.2. Connection Relationships

The additional relationships for the Connection class entities are provided below. The Connection class

uses all the common relationships provided in section 3.4.0.2, except for decomposes/decomposed.

3.4.5.2.2. connects to/connected by

Definition: connects to identifies the Asset that this Connection adjoins.

Usage: Connection A connects to Asset 1.

Inverse Usage: Asset 1 and Asset 2 are connected by Connection A.

LML Specification 2.0
April 23, 2025

28

3.4.5.2.2.1. origin

Definition: origin represents if the Asset is the origin of the Connection. This attribute enables

unidirectional (one or the other Asset's relationship origin is False), in additional to the default bi-

directional flow (both origins are set to True by default).

Data Type: Boolean

3.4.5.2.2.2. multiplicity

Definition: multiplicity, also called cardinality, represents the number of relationships (one to many,

many to one, etc.) that can occur.

Data Type: Text

3.4.5.2.5. joined by/joins

Definition: joined by identifies the Connection that connects to this Connection. joined by implies the

end of the relationship.

Usage: Connection A is joined by Connection B.

Inverse Usage: Connection B joins Connection A.

3.4.5.2.6.1. bidirectional

Definition: bidirectional represents if the connection between two Connections is bidirectional. If the

Connection is not bidirectional, the Connection that has the relation joins is the start and

the Connection with joined by is the end.

Data Type: Boolean

3.4.5.3. Conduit (Connection)

Definition: A Conduit entity specifies the connection between Assets and has capacity and latency. A

Conduit carries an Input/Output.

Examples: SpaceWire, Bluetooth, railway

All attributes and relationships from Connection are inherited by the Conduit entities.

3.4.5.3.1. Conduit Attributes

Conduit attributes include: name, number, description, capacity, latency, units, and type.

3.4.5.3.1.1. capacity

Definition: capacity represents the maximum rate supported by the Conduit. (Used in simulation as to

add time delay by dividing the Input/Output size with the capacity value.)

Data Type: Number

3.4.5.3.1.2. latency

Definition: latency represents the time required to transmit the information or Input/Output entity over

this Conduit. This value does not factor in any delays due to capacity limitations.

LML Specification 2.0
April 23, 2025

29

Data Type: Number

3.4.5.3.1.3. units (Conduit)

Definition: units represents units used to measure the capacity of t hi s Condui t , such as bi t s per second or gal l ons per m i nut e.

Data Type: Text

3.4.5.3.1.4. type (Conduit)

Definition: type provides aliases for the entities. For Conduit these can include: Cable, Downlink,

Human-in-the-Loop, Human Machine Interface, Interface, Landline, Link, Needline, Network, Pipe, RF -

Satcom, RF - Terrestrial, Roadway, Service Interface, Uplink, Wireless.

Data Type: Text

3.4.5.3.2. Conduit Relationships

The additional relationships for the Conduit class entities are provided below. The Conduit class uses all

the common relationships provided in section 3.4.0.2 (including decomposes/decomposed by) and the

additional Connection relationships from section 3.4.5.2.

3.4.5.3.2.1. defined protocol by/defines protocol for

Definition: defined protocol by identifies the Artifact entity that contains the standard used by this

Conduit entity.

Usage: Conduit A has a defined protocol by Artifact 1.

Inverse Usage: Artifact 1 defines (the) protocol for Conduit A.

3.4.5.3.2.2. transfers/transferred by

Definition: transfers identifies the Input/Output entity that is passed by this Conduit entity.

Usage: Conduit A transfers Input/Output 1.

Inverse Usage: Input/Output 1 is transferred by Conduit A.

3.4.5.4. Dependency (Connection)

Definition: A Dependency entity specifies a connection between two Tasks in a Gantt Chart. It defines

the relationship a Task depends on another Task in order to Start or Finish.

3.4.5.4.1. Dependency Attributes

Dependency class entities have no additional attributes.

3.4.5.4.2. Dependency Relationships

The additional relationships for the Dependency class entities are provided below.

The Dependency class uses all the common relationships provided in section 3.4.0.2

(excluding decomposes/decomposed by) and the additional Connection relationships from section

3.4.5.2.

LML Specification 2.0
April 23, 2025

30

3.4.5.4.2.1. has dependent/depends on

Definition: has dependent identifies the Task entity that depends on this Task entity.

Usage: Task A has dependent Task B.

Inverse Usage: Task B depends on Task A.

3.4.5.4.2.1.1. origin

Definition: origin identifies which Task entity is depending on another Task entity for completion.

Data Type: Boolean

3.4.5.4.2.1.2. dependency

Definition: dependency identifies if the origin is at the start or finish of each Task entity. This capability

enables the distinguishing between start-to-finish, finish-to-start, start-to-start, and finish-to-finish.

Data Type: Enumeration

3.4.5.5. Logical (Connection)

Definition: A Logical entity specifies relationship between Assets. It is primarily used in database schema

development and entity-relationship diagrams.

All attributes and relationships from Connection are inherited by the Logical entities.

3.4.5.5.1. Logical Attributes

Logical class entities have no additional attributes.

3.4.5.5.2. Logical Relationships

The additional relationships for the Logical class entities are provided below. The Logical class uses all

the common relationships provided in section 3.4.0.2 (including decomposes/decomposed by) and the

additional Connection relationships from section 3.4.5.2.

3.4.5.5.2.1. specified by/specifies (Logical)

Definition: specified by identifies a Characteristic entity that provides further information about this

Logical entity. This relationship is used to specify an attribute on a relationship in an extended Entity-

Relationship-Attribute (ERA) schema.

Usage: Logical A is specified by Characteristic (attribute) 1.

Inverse Usage: Characteristic (attribute) 1 specifies Logical A.

3.4.6. Cost
Definition: A Cost entity specifies the outlay or expenditure (as of effort or sacrifice) made to achieve an

objective associated with another entity.

Examples: $100, 6 man-hours

LML Specification 2.0
April 23, 2025

31

3.4.6.1. Cost Attributes

Cost attributes include: name, number, description, amount, category, contract type, rate,

units, and type.

3.4.6.1.1. amount

Definition: amount represents this Cost’s value.

Data Type: Number

3.4.6.1.2. category

Definition: category represents the part of the lifecycle for which the money is used (commonly called

Color of Money). This matches the US Federal Government (DoD) cost phases.

Data Type: Enumeration. Suggested Values: [Procurement, MILCON, MILPERS, O&M, RDT&E, SCN, N/A]

3.4.6.1.3. contract type

Definition: contract type represents this Cost way to identify the reimbursement structure (i.e., CPFF vs

T&M).

Data Type: Enumeration. Suggested Values: [CPFF, CPAF, CPIF, FFP-Completion, FFP-LOE, T&M, N/A]

3.4.6.1.4. rate

Definition: rate represents how this Cost is billed.

Data Type: Enumeration. Minimum Values: [Fi xed, Per Hour]

3.4.6.1.5. units (Cost)

Definition: units represents the currency used for this Cost, such as $ or €.

Data Type: Text

3.4.6.1.6. type (Cost)

Definition: type provides aliases for the entities. For Cost these can include: Actual Cost, Earned Value,

Estimated Cost, Cost Overrun, Planned Cost

Data Type: Text

3.4.6.2. Cost Relationships

No additional relationships are defined for the Cost class entities. The Cost class uses all the common

relationships provided in section 3.4.0.2.

3.4.7. Decision
Definition: A Decision entity specifies an opportunity to make a choice.

Examples: slip schedule by two months, accept risk, hire ten new employees.

3.4.7.1. Decision Attributes

Decision attributes include: name, number, description, assumptions, justification, status, and type.

LML Specification 2.0
April 23, 2025

32

3.4.7.1.1. assumptions

Definition: assumptions represents facts that are used as a basis for this Decision.

Data Type: Text

3.4.7.1.2. justification

Definition: justification represents the reason and context for making this Decision. For additional

justification, the user may want to apply the enabled by relationship to link it to a Statement or

Statements.

Data Type: Text

3.4.7.1.3. status

Definition: status represents the state of the Decision (open or closed).

Data Type: Enumeration. Mandatory Values: [Open, Cl osed]

3.4.7.1.4. type (Decision)

Definition: type provides aliases for the entities. For Decision these can include: Challenge, Issue,

Problem.

Data Type: Text

3.4.7.2. Decision Relationships

The additional relationships for the Decision class entities are provided below. The Decision class uses all

the common relationships provided in section 3.4.0.2.

3.4.7.2.1. alternative/alternative of

Definition: alternative identifies the Statement entity that is a potential choice for this Decision entity.

Usage: Decision A alternative is Statement 1

Inverse Usage: Statement 1 is the alternative of Decision A.

3.4.7.2.1.1. choice

Definition: choice represents if this alternative was the choice selected. If the Decision entity is still

open, none of these alternatives would be True.

Data Type: Boolean

3.4.7.2.2. date resolved by/date resolves

Definition: date resolved by identifies the Time entity when this Decision entity was closed. For open

issues, this attribute can be left blank.

Usage: Decision A date (was) resolved by Time 1.

Inverse Usage: Time 1 date resolves Decision A.

LML Specification 2.0
April 23, 2025

33

3.4.7.2.3. decision due/decided by

Definition: decision due identifies the Time entity when this Decision entity is scheduled to be closed.

Usage: Decision A decision (is) due on Time 1.

Inverse Usage: Time 1 decided by Decision A.

3.4.7.2.4. made by/made

Definition: made by identifies the Asset entity responsible for making this Decision entity.

Usage: Decision A is to be (or was) made by Asset 1.

Inverse Usage: Asset 1 made Decision A.

3.4.7.2.5. responded by/responds to

Definition: responded by identifies the Asset entity (usually a person or organization) that acts on this

Decision entity.

Usage: Decision A is responded by Asset 1.

Inverse Usage: Asset 1 responds to Decision A.

3.4.7.2.5.1. responsibility

Definition: responsibility represents the Asset entity that has the responsibility for resolving the

Decision entity.

Data Type: Enumeration. Suggested Values: [Primary, Secondary]

3.4.8. Input/Output
Definition: An Input/Output entity specifies the matter, energy, and/or information input to, triggers

(controls), or output from an Action.

Examples: Nickel/gumball, gasoline/horsepower, investment/return.

3.4.8.1. Input/Output Attributes

Input/Output attributes include: name, number, description, size, units, and type.

3.4.8.1.1. size

Definition: size represents the amount or proportion of this Input/Output, such as 100 as 100 Gigabytes

or number of entities (e.g., 10 as in 10 tokens).

Data Type: Number

3.4.8.1.2. units (Input/Output)

Definition: units represents the measure using in the size attribute of this Input/Output entity, such as

Gigabytes or tokens.

Data Type: Text

LML Specification 2.0
April 23, 2025

34

3.4.8.1.3. type (Input/Output)

Definition: type provides aliases for the entities. For Input/Output these can include: Analog, Data,

Digital, Event, Information, Item, Mixed, Physical, Product, Verbal.

Data Type: Text

3.4.8.2. Input/Output Relationships

The additional relationships for the Input/Output class entities are provided below.

The Input/Output class uses all the common relationships provided in section 3.4.0.2.

3.4.8.2.1 generated by/generates

Definition: generated by identifies the Action entity that transformed this Input/Output entity.

Usage: Input/Output A is generated by Action 1.

Inverse Usage: Action 1 generates Input/Output A.

3.4.8.2.2. received by/receives

Definition: received by identifies the Action entity that takes in this Input/Output entity.

Usage: Input/Output A is received by Action 1.

Inverse Usage: Action 1 receives Input/Output A.

3.4.8.2.2.1. trigger

Definition: trigger represents this relation as an enabling requirement for the Action. An Action begins

execution when it has received control enablement, all of its triggers have arrived, and its necessary

resources are available.

Data Type: Boolean

3.4.8.2.3. transferred by/transfers

Definition: transferred by identifies the Connection (usually a Conduit) entity that passes this

Input/Output entity.

Usage: Input/Output A is transferred by Connection 1

Inverse Usage: Connection 1 transfers Input/Output A.

3.4.9. Location (Abstract Class)
Definition: A Location entity specifies where an entity resides. Abstract Class.

3.4.9.1. Location Attributes

No additional attributes are contained in the Location abstract class.

3.4.9.2. Location Relationships

No additional relationships for the Location class entities are provided below. The Location class uses all

the common relationships provided in section 3.4.0.2., except: causes/caused by; enables/enabled by;

incurs/incurred by; references/referenced by; resolves/resolved by; and results in/resulted by.

LML Specification 2.0
April 23, 2025

35

3.4.9.3. Orbital (Location)

Definition: An Orbital entity specifies a location (ephemeris) along an orbit around a celestial body. Note

that this includes transfer orbits as well. Examples: Mars orbit, transfer to lunar orbit

3.4.9.3.1. Orbital Attributes

Orbital attributes include: name, number, description, inclination, semimajor axis, longitude of

ascending node, reference plane, argument of periapsis, origin of longitude, mean anomaly, apoapsis,

periapsis, and eccentricity.

3.4.9.3.1.1. inclination

Definition: inclination represents the angle between the orbital plane and a reference plane, such as the

equatorial plane for Earth. The inclination must be specified with the longitude of ascending node to

characterize the orbital plane.

Data Type: Number

3.4.9.3.1.2. semimajor axis

Definition: semimajor axis represents the one half of the length of the longest diameter of the orbital

ellipse. The semimajor axis must be specified with the eccentricity to characterize the orbital ellipse

shape.

Data Type: Number

3.4.9.3.1.3. longitude of ascending node

Definition: longitude of ascending node represents the angle from the origin of longitude to the

ascending node, measured in the reference plane. For the Earth, the origin of longitude is typically the

Prime Meridian. The longitude of ascending node must be specified with the inclination to characterize

the orbital plane.

Data Type: Number

3.4.9.3.1.4. reference plane

 Definition: reference plane represents the reference plane from where the inclination angle will be

calculated.

Data Type: Text

3.4.9.3.1.5. argument of periapsis

 Definition: argument of periapsis represents the angle between the periapsis and the ascending node as

measured in the orbital plane in the direction of motion.

Data Type: Number

3.4.9.3.1.6. origin of longitude

Definition: origin of longitude represents the reference meridian from where the longitude of ascending

node will be calculated.

Data Type: Text

LML Specification 2.0
April 23, 2025

36

3.4.9.3.1.7. mean anomaly

Definition: mean anomaly represents the proportion of orbital area swept since the last periapsis at the

specified time. It is used to define the position of the orbiting Asset along the orbital ellipse.

Data Type: Number

3.4.9.3.1.8. apoapsis

Definition: apoapsis represents the point of greatest distance from the celestial body being orbited. For

Earth, the term is apogee. For the Sun the term commonly used is aphelion. The apoapsis must be

specified with the periapsis to characterize the orbital ellipse shape.

Data Type: Number

3.4.9.3.1.9. periapsis

Definition: periapsis represents the point of closest distance from the celestial body being orbited. For

Earth, the term is perigee. For the Sun the term commonly used is perihelion. The periapsis must be

specified with the apoapsis to characterize the orbital ellipse shape.

Data Type: Number

3.4.9.3.1.10. eccentricity

Definition: eccentricity represents the amount the orbit deviates from a perfect circle (0 being perfectly

circular and 1 is a parabola – no longer a closed orbit). The eccentricity must be specified with the

semimajor axis to characterize the orbital ellipse shape.

Data Type: Number

3.4.9.3.2. Orbital Relationships

No additional relationships for the Orbital class entities are provided below. The Orbital class uses all the

relationships provided in section 3.4.9.2.

3.4.9.4. Physical (Location)

Definition: A Physical entity specifies a location on, below, or above the surface of a celestial body.

Examples: North Pole, Camp Lejeune

Parent Class: Location

Note that this entity definition uses Cartesian Coordinates (x, y, z). It may be desirable to establish other

coordinate systems (e.g., Cylindrical, Spherical, etc.) for other implementations.

3.4.9.4.1. Physical Attributes

Physical attributes include: name, number, description, address, altitude/depth, coordinates,

units, and type.

3.4.9.4.1.1. address (Physical)

Definition: address represents this Physical location's complete address.

Data Type: Text

LML Specification 2.0
April 23, 2025

37

3.4.9.4.1.2. altitude/depth

Definition: altitude/depth represents the distance above (positive values) or below (negative values) the

surface.

Data Type: Number

3.4.9.4.1.3. coordinates

Definition: coordinates represents the coordinate points for this Physical location (GPS or other

system).

Data Type: GeoPoint

3.4.9.4.1.4. units (Physical)

Definition: units represents the units used to measure the altitude/depth of the Physical location.

Data Type: Text

3.4.9.4.1.5. type (Physical)

Definition: type provides aliases for the entities. For Physical these can include: Geospatial Location,

Map Coordinates

Data Type: Text

3.4.9.4.2. Physical Relationships

No additional relationships for the Orbital class entities are provided below. The Orbital class uses all the

relationships provided in section 3.4.9.2.

3.4.9.5. Virtual (Location)

Definition: A Virtual entity specifies a location within a digital network. Example:

http://www.google.com

Parent Class: Location

3.4.9.5.1. Virtual Attributes

Virtual attributes include: name, number, description, and address.

3.4.9.5.1.1. address (Virtual)

Definition: address represents the identification address using the Uniform Resource Identifier (URI)

protocols.

Data Type: URI

3.4.9.5.2. Virtual Relationships

No additional relationships for the Virtual class entities are provided below. The Virtual class uses all the

relationships provided in section 3.4.9.2.

http://www.google.com/

LML Specification 2.0
April 23, 2025

38

3.4.10. Risk
Definition: A Risk entity specifies the combined probability and consequence in achieving objectives.

Example: the risk of a large meteorite hitting the earth in the next 100 years is low but it could cause the

extinction of life as we know it.

3.4.10.1. Risk Attributes

Risk attributes include: name, number, description, consequence, consequence description, mitigation

status, probability, status, trend, and type.

3.4.10.1.1. consequence

Definition: consequence represents the level of effect from this Risk entity occurring.

Data Type: Percent

3.4.10.1.2. consequence description

Definition: consequence description represents the result of this Risk entity occurring.

Data Type: Text

3.4.10.1.3. mitigation status

Definition: mitigation status represents the status of the mitigation technique for this Risk entity.

Data Type: Enumeration. Mandatory Values: [Accept , Avoi d, M i t i gat e, Transf er]

3.4.10.1.4. probability

Definition: probability or likelihood represents the chance that this Risk entity will occur.

Data Type: Percent

3.4.10.1.5. status

Definition: status represents the current state of this Risk entity.

Data Type: Enumeration. Suggested Values: [Open, D upl i cat e, Decl i ned, Resol ved]

3.4.10.1.6. trend

Definition: trend indicates the change in the Risk entity over time as to whether it is increasing,

decreasing, or staying the same.

Data Type: Enumeration. Suggested Values: [Decreasi ng, I ncreasi ng, New , Unchanged]

3.4.10.1.7. type (Risk)

Definition: type provides aliases for the entities. For Risk entities these can include: Cost Risk, Schedule

Risk, Technical Risk

Data Type: Text

3.4.10.2. Risk Relationships

No additional relationships for the Risk class entities are provided below. The Risk class uses all the

common relationships provided in section 3.4.0.2, except traced from/traced to.

LML Specification 2.0
April 23, 2025

39

3.4.11. Statement
Definition: A Statement entity specifies text referenced by the knowledgebase and usually contained in

an Artifact. Example: Elvis is king!, Our goal is to be the first on Mars

3.4.11.1. Statement Attributes

Statement attributes include: name, number, description, and type.

3.4.11.1.1. type (Statement)

Definition: type provides aliases for the entities. For Statement entities these can include: Acronym,

Assumption, Constraint, Definition, Directive, Doctrine, Goal, Need, Objective, Plan, Policy, Question,

Rule, Scope, Standard, Vision

Data Type: Text

3.4.11.2. Statement Relationships

The additional relationships for the Statement class entities are provided below. The Statement class

uses all the common relationships provided in section 3.4.0.2.

3.4.11.2.1. alternative of/alternative

Definition: alternative of identifies the Decision entity that has this Statement entity as a potential

choice.

Usage: Statement A is an alternative of Decision 1.

Inverse Usage: Decision 1 alternative is Statement A.

3.4.11.2.1.1. choice

Definition: choice represents if this alternative was the choice selected.

Data Type: Boolean

3.4.11.2.2. sourced by/source of

Definition: sourced by identifies the Artifact entity that contains this Statement entity.

Usage: Statement A is sourced by Artifact 1.

Inverse Usage: Artifact 1 is the source of Statement A.

3.4.11.3. Requirement (Statement)

Definition: A Requirement entity identifies a capability, characteristic, or quality factor of a system that

must exist for the system to have value and utility to the user. Example: pump shall weigh no more than

1.2 kilograms.

Parent Class: Statement

3.4.11.3.1. Requirement Attributes

Requirement attributes include: name, number, description, rationale, and type.

LML Specification 2.0
April 23, 2025

40

Note the quality attributes below are optional. Other sets of quality attributes, such as the ones defined

in the INCOSE Requirements Guide may be provided by the tool developer, or these may be user-

definable. However, some form of quality attributes is recommended.

Attribute Type Description
clear Boolean clear represents if this Requirement entity is unambiguous and not confusing.

complete Boolean complete represents if this Requirement entity expresses a whole idea.

consistent Boolean consistent represents if this Requirement entity is not in conflict with other
requirements.

correct Boolean correct represents if this Requirement entity describes the user's true intent
and is legally possible.

design Boolean design represents if this Requirement entity does not impose a specific
solution on design; says "what", not "how".

feasible Boolean feasible represents if this Requirement entity can be implemented with
existing technology, within cost and schedule.

modular Boolean modular represents if this Requirement entity can be changed without
excessive impact on other requirements.

traceable Boolean traceable represents if this Requirement entity is uniquely identified, and able
to be tracked to predecessor and successor lifecycle items/objects.

verifiable Boolean verifiable represents if this Requirement entity is provable (within realistic
cost and schedule) that the system meets the requirement.

3.4.11.3.1.1. rationale

Definition: rationale provides a place to capture the reason(s) behind this Requirement entity.

Data Type: Text

3.4.11.3.1.2. type (Statement)

Definition: type provides aliases for the entities. For Requirement entities these can include: Functional

Requirement, Safety Requirement, Support Requirement, Verification Requirement

Data Type: Text

3.4.11.3.2. Requirement Relationships

No additional relationships are defined for the Requirement class entities. The Input/Output class uses

all the common relationships provided in section 3.4.0.2 and the relationships found in section 3.4.11.2.

Missing satisfied by and verified by?

3.4.11.4. Verification Requirement (Statement)

Description: A Verification Requirement entity specifies what is required to confirm that a requirement

is satisfied.

Parent Class: Statement

LML Specification 2.0
April 23, 2025

41

3.4.11.4.1. Verification Requirement Attributes

Verification Requirement attributes include: name, number, description, acceptance criteria, evidence,

rationale, and verification method.

3.4.11.4.1.1. acceptance criteria

Definition: acceptance criteria state what results must be achieved to be considered satisfactory. These

criteria should be apparent from the requirement statement and appropriate for the method of

verification selected.

Data Type: Text

3.4.11.4.1.2. evidence

Definition: evidence specifies the type of documented or otherwise validated information and materials

required to be obtained and delivered in order to confirm that a requirement was satisfied. For

example, “Material test report with sample coupons”, “Inspection record recording actual geo-location

measurements”, “Weld Radiographs”, “Analysis report based on results from a qualified model”,

“written supplier warrantee.”

Data Type: Text

3.4.11.4.1.3. rationale

Definition: rationale captures the reasoning for the verification requirement properties.

Data Type: Text

3.4.11.4.1.4. verification method

Definition: The method used by the V&V specialist to verify that the system or its components meet

requirements.

Data Type: Enumeration. Minimum values: “analysis”, “inspection”, “demonstration”, “test”. Other

possibilities include “modeling and simulation”, “design review”, “supplier guarantee”. The user needs

to be able to add to this list.

3.4.11.4.2. Verification Requirement Relationships

Name Classes Description

verifies Requirement Verifies a Requirement is satisfied by an Asset

traced to Verification Event Traced to a Verification Event to support planning activities

verifies Asset Verifies an Asset satisfies a requirement

3.4.12. Time
Definition: A Time class entity specifies a point or period when an action, asset, process, or condition

exists, finishes, starts, or continues. Example: Milestone A, Phase 2

LML Specification 2.0
April 23, 2025

42

3.4.12.1. Time Attributes

Time attributes include: name, number, description, duration, evidence, end, start, and type.

3.4.12.1.1. duration

Definition: duration represents the period of time this Time entity occurs. A zero (0) duration indicates a

milestone.

Data Type: Number

3.4.12.1.2. end

Definition: end represents the time when this Time entity finishes. It can be computed from the start

and duration attributes.

Data Type: DateTime

3.4.12.1.3. start (Time)

Definition: start represents the time when this Time entity begins.

Data Type: DateTime

3.4.12.1.4. type (Time)

Definition: type provides aliases for the entities. For Time entities these can include: Duration,

Milestone, Point In Time, Time Frame

Data Type: Text

3.4.12.2. Time Relationships

The additional relationships for the Time class entities are provided below. The Time class uses all the

common relationships provided in section 3.4.0.2.

3.4.12.2.1. date resolves/date resolved by

Definition: date resolves identifies the Decision entity that is closed at this Time entity.

Usage: Time A date resolves Decision 1.

Inverse Usage: Decision 1 date resolved by Time A.

3.4.12.2.2. decided by/decision due

Definition: decided by identifies the Decision entity scheduled for closure at this Time entity.

Usage: Time A must be decided by Decision 1?

Inverse Usage: Decision 1 decision (is) due by Time A.

4. Visualizations
The following diagrams represent the common forms of visualizing information. They do not attempt to

encompass every possible visualization. Only one is unique to LML: the Action Diagram. Many similar

models have been developed over the years to express functional sequencing, such as the Flow Charts,

LML Specification 2.0
April 23, 2025

43

Activity Diagram in UML/SysML, Business Process Modeling Notation (BPMN), and others. Although

these various notations are accurate, they use many different symbols, which often confuse the non-

expert viewers/recipients of the visualization. As seen below, the visualization of this functional

sequencing in LML is much simpler, but it appears to have all the necessary information for language

execution. The usual constructs are replaced by special cases of Actions to denote decision points.

The other visualizations should be considered standard diagrams, used over many years by different

techniques. We also provide suggested diagrams that LML users may want to consider as well. A few do

not appear to require visualization beyond a hierarchy diagram. We denote which diagrams are

appropriate for which classes.

4.1. Action Diagram (Mandatory for Action entities with children)
The Action Diagram (see Figure 4-1) represents the functional sequencing of Actions along with the data

flow provided by the Input/Output entities. This combination of Actions with Input/Outputs is similar to

the SREM “Behavior Diagram” or UML Activity Diagram. Without the Input/Output entities, the Action

Diagram would be the equivalent of the classic Function Flow Block Diagram (FFBD) or IDEF 3. The main

difference between LML and these other diagrams is the use of special kinds of Actions to replace the

constructs used in these other languages. The construct set is shown below.

Figure 4-1. Special Actions for the Action Diagram to Capture Decision Points.

The special cases of Actions, denoted by the rectangle with a diamond embedded in it (showing ½ the

diamond as a point on the rectangle), represent decision points. For example, in a loop the key decision

is the exit criteria for the loop. This criterion can be as simple as the number of iterations of the loop or

more complex logic that determines when the loop must stop.

The “OR” decision point represents an exclusive selection of one path or the other. The decision point in

the case can be a probability or a specific criterion for path selection.

LML Specification 2.0
April 23, 2025

44

The final decision point type is the “SYNC.” The SYNC provides the functional rationale for ending

parallel branches. Note that in the physical view, two separate entities can exist without any

synchronization between them. However, in the functional view between two physical entities that are

interacting, it is necessary decide how to terminate that interaction. We see this in software that when

two parallel processes are spawned, these threads must be synchronized to complete the program.

The Action Diagram can include Input/Output entities as well. An example of this inclusion is shown in

Figure 4-2.

Figure 4-2. An Example Action Diagram with Inputs/Outputs.

The Input/Output entities are shown as parallelograms, reminiscent of the classical flow chart symbols

used in the 1950s and 1960s. Two colors (or some other mechanism) are used to distinguish triggering

Input/Outputs from optional Input/Outputs. It is recommended that a different type of line be used to

show the Input/Output flow, thus making it easy to distinguish between the data flow and functional

sequencing lines. The diagram should also contain a way to show the Start and End of the functional

sequencing.

The Action Diagram can also explicitly show resources being consumed, produced, or seized. Figure 4-3

show the Resource entities as hexagrams.

LML Specification 2.0
April 23, 2025

45

Figure 4-3. An Example Action Diagram with Resources.

No other constructs have been determined to be necessary. Other languages include a “Replicate,”

however the research done by the LML developers indicated that it was a way to identify a physical

instantiation of the functional entity in more than one physical entity at a time. This representation

appears more appropriately in the physical diagram (see Asset Diagram in next section).

While this specification does not directly specify or standardize the Action Diagram, the constructs

above are to be used as guidance for the overall look of an Action Diagram. The key takeaway is the

inclusion of logic flow into the Action entities themselves, instead of relying on separate logic flow

diagram elements.

4.2. Asset Diagram (Mandatory for Asset entities with children)
LML must have a physical representation of design elements as well as the functional one provided by

the Action Diagram. Figure 4-4 shows one way of providing this information. The Assets are shown as

rectangles, with Conduits displayed as lines connecting the Assets. Since Resource is a subclass of Asset,

they could also be displayed by this diagram. Other information, such as the capacity and latency

attributes of the Conduit, may be overlaid on this diagram as well. Also, since the Asset type may

interest most users, it should be desirable to include that attribute on this diagram as well.

LML Specification 2.0
April 23, 2025

46

Figure 4-4. A Simple Asset Diagram.

Nodes and connections could be replaced with pictures as shown in Figure 4-5.

Figure 4-5. Asset Diagram with Pictures and Special Lines for Conduits.

The Asset Diagram is mandatory only for those Assets with children.

4.3. Spider Diagram (Mandatory for Traceability)
The spider diagram shows how entities are related to one another. This diagram is similar to the ERD

shown above, but reflects LML’s schema, not an abstract schema. This diagram (see Figure 4-6) shows

traceability of LML entities with their relationships.

LML Specification 2.0
April 23, 2025

47

Figure 4-6. Example Spider Diagram to Show Traceability between Entities Using the LML Relationships.

4.4. Interface Control Diagram (Mandatory)
A number of interface diagram types have been suggested over the years. Most of these diagrams come

from drawing approach that show different aspects of the interface. LML’s Asset Diagram provides part

of an interface definition by showing how Assets are connected by Conduits. But more information is

needed to completely define an interface, including the capacity and latency, as well as the

Input/Output entities that are transferred across the Conduit. Conduits can also be decomposed, so

parent-child relationships need a means of being visualized too. Of course other information, such as

protocols used, will more completely define the interface, but at some point the diagrams get to be too

cluttered to be useful in helping the stakeholders understanding of the interface. Figure 4-7 shows a

potential Interface Diagram that displays most of the information needed to define an Interface.

LML Specification 2.0
April 23, 2025

48

Figure 4-7. Interface Control Diagram

This figure shows the two Assets (Spacecraft and Payload) with the Conduit (Payload/Bus Interface)

between them. The next level of decomposition for both the Assets and the Conduits are also shown.

The child Conduits are attached to the child Assets. Note that an arrow can be used to depict the

directionality of the child Conduit. The latency and capacity values of each child Conduit are shown as

well. The green and gold items on the Conduits in this diagram depict the Input/Output entities

transferred by the child Conduits. The difference between a green and gold Input/Output in this case

indicate a potential error in the size units of the Input/Output entity. While error detection is not

required for this diagram, such capabilities are desirable in all diagrams, where appropriate.

1 INCOSE defines a system as a “combination of interacting elements organized to achieve one or more

stated purposes.”

LML Specification 2.0
April 23, 2025

49

4.5 Example Views for Other LML Entities
LML was designed to support the full lifecycle. All of its entities can support the common visualizations

that architects, systems engineers, software engineers, test engineers, operators, logisticians, and

program managers use. The examples below are suggestions of how to implement these common

visualizations using LML.

4.5.1 Class Diagram
The diagram below shows how to implement the UML Class Diagram using LML classes. Since the Class

Diagram has become a standard for software development, it seems a good candidate for inclusion in

LML’s approach. In this diagram, the LML entities that match the diagram elements include: Asset with

the type “object”; attributes are captured as Characteristics; methods are Actions; and relationships are

Logical connections.

Figure 4-6. LML Encourages Use of the Class Diagram and Provides the Schema Entities

 to Support Its Creation.

4.5.2. ERAA Diagram

Another way to model information has been the classic entity-relationship diagram (ERD) or entity-

relationship-attribute (ERA) diagram. These define the entities, relationships, and attributes of the entity

only. Since LML has added attributes on the relationship, we have extended it to an ERAA diagram. An

example of this is shown below using a class diagram. The relationships are expressed using the Logical

Connection. Entities are represented by Assets. You can also capture attributes as Characteristics. The

relationship attribute is shown under the relationship name in parentheses.

LML Specification 2.0
April 23, 2025

50

Figure 4-7. ERAA Diagram Developed Using the Class Diagram.

4.5.3 Timelines
The Actions and Times can be displayed using a classic Gantt Chart shows how functional elements

execute over time. An example of this is shown below.

Figure 4-8. Use of Gantt Chart for Displaying Actions and Durations.

Time with Actions or Assets can also be visualized in many other ways. One of the most useful is shown

below.

LML Specification 2.0
April 23, 2025

51

Figure 4-9. Timeline Diagram Showing Actions at Specific Times.

4.5.4. Hierarchy Diagram
A hierarchy chart is used in LML to show decomposition of elements. The figure below shows an

example of requirements decomposition. This chart uses the decomposed by relationship.

LML Specification 2.0
April 23, 2025

52

Figure 4-10. A Hierarchy Diagram Is a Good Way to Show Decomposition.

4.5.5. Risk Matrix
A standard DoD risk matrix (shown below) or other form can be used to display Risk entity information.

Another type of risk analysis uses probabilities to create a fault-tree. A fault tree is often shown as a

hierarchy diagram with the probabilities shown for each branch. An Action Diagram can also support

fault tree analysis.

LML Specification 2.0
April 23, 2025

53

Figure 4-11. Typical Risk Matrix.

4.5.6. State Machine Diagram
The state machine diagram expresses how an Asset transitions from one state to another. In the

diagram below, the state (or Characteristic) transition occurs when the Action entity event causes the

transition to the other state.

Name Class Description
State Characteristic Means that it’s a state of the system

Initial State Characteristic Means that it’s the initial state

Final State Characteristic Means that it’s the final state.

LML Specification 2.0
April 23, 2025

54

Figure 4-12. The State Machine Diagram Has Proven Useful and LML Supports It.

LML Specification 2.0
April 23, 2025

55

Appendix A. SysML v1.X Mapping to LML
SysML focuses mainly on diagrams, with an underlying ontology embedded in the XMI that each

diagram represents. Currently (October 2013) a complete ontology is under development. The table

below shows the various SysML diagrams and the LML equivalent diagram and associated classes.

Table A-1. SysML Diagram Mapping to LML Diagrams and Ontology

SysML
Diagram

LML Diagram LML Entities

Activity Action Diagram Action, Input/Output

Sequence Sequence Action, Asset

State Machine State Machine Characteristic (State), Action (Event)
Use Case Asset Diagram Asset, Connection

Block
Definition

Class Diagram, Hierarchy
Chart

Input/Output (Data Class), Action (Method),
Characteristic (Property)

Internal Block Asset Diagram Asset, Connection

Package Asset Diagram Asset, Connection

Parametric Hierarchy, Spider, Radar Characteristic

Requirement Hierarchy, Spider Requirement and related entities

Although the Systems Modeling Language (SysML) does not have an official ontology many tool vendors

have created these models from database schemas. The purpose of this appendix is to identify the

entities, relationships and attributes necessary to completely visualize the SysML models in LML. The

SysML 1.4 standard is available at http://www.omg.org/spec/SysML/... (as of 1 December 2015). This

appendix will only address the changes to LML required to produce these models.

Note that significant changes between the Action Diagram and the Activity Diagram must occur if

developers want to adhere to all the SysML requirements, since Action Diagrams do not contain the

large number of constructs used in an Activity Diagram. This specification does not recommend such a

large number of constructs as they impede understanding of the diagram. The same content is provided

by the ontology.

SPEC Innovations’ Innoslate® tool was used as the basis for this extension. Innoslate added one class

(Equation) and one subclass to Asset (Port) to visualize the complete set of SysML models. Numerous

relationships were added to accommodate the SysML visualizations. The changes to Innoslate’s LML

schema for SysML are shown in the tables below.

Table A-2. New Classes

Class Parent Description

Equation An Equation entity specifies an equation (mathematical or logical) that can be
used to describe a part of the model.

Port Asset An interaction point of a block, specifying the input and output flow.

LML Specification 2.0
April 23, 2025

56

Equation Class
An Equation entity specifies an equation (mathematical or logical) that can be used to describe a part of

the model.

Table A-3. Equation Properties

Name Type Description

Value Text Value represents this Equation's text.

Table A-4. Equation Relations

Name Classes Description

decomposed
by

Equation Decomposed by identifies the children of this entity.

decomposes Equation Decomposes identifies the parent of this entity.

equation for Cost Equation for identifies the entity that this Equation represents.

equation for Time Equation for identifies the entity that this Equation represents.

equation for Characteristic Equation for identifies the entity that this Equation represents.

equation for Statement Equation for identifies the entity that this Equation represents.

equation for Decision Equation for identifies the entity that this Equation represents.
equation for Action Equation for identifies the entity that this Equation represents.

equation for Risk Equation for identifies the entity that this Equation represents.

equation for Location Equation for identifies the entity that this Equation represents.
equation for Asset Equation for identifies the entity that this Equation represents.

equation for Artifact Equation for identifies the entity that this Equation represents.

equation for Connection Equation for identifies the entity that this Equation represents.
equation for Input/Output Equation for identifies the entity that this Equation represents.

has variable Characteristic Has variable identifies the Characteristic that is represented in this
Equation.

related to Equation Related to identifies the entity that ties in a peer-to-peer way with
this entity.

relates Equation Relates identifies the peer-to-peer entity that is tied to this entity.

Port Class
An interaction point of a block, specifying the input and output flow.

Table A-5. Port Properties

Name Type Description

Direction Enumeration Direction represents the flow of data on this port.

LML Specification 2.0
April 23, 2025

57

Table A-6. Action Relations

Name Classes Description

depends on Action Depends on identifies the Action that this Action has a dependency
on.

equation of Equation Equation of identifies the Equation that represents this entity.
extend Action Extend identifies the Action (use case) that is added to this Action

(use case).

extended by Action Extended by identifies the Action (use case) that is added from this
Action (use case).

fetches Characteristic Fetches identifies the State Characteristic that this Action receives.

has
dependent

Action Has Dependent identifies the Action that depends on this Action.

include Action Include identifies the Action (use case) that is added to this Action
(use case).

included by Action Included by identifies the Action (use case) that is added from this
Action (use case).

pushed by Characteristic Pushed by identifies the State Characteristic that this Action is
generated from.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.
verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-7. Artifact Relations

Name Classes Description
equation of Equation Equation of identifies the Equation that represents this entity.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.

verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-8. Asset Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

extend Asset Extend identifies the Action (use case) that is added to this Action
(use case).

extended by Asset Extended by identifies the Action (use case) that is added from this
Action (use case).

instantiated
by

Asset Instantiated by identifies another entity that is an instance of this
entity.

instantiates Asset Instantiates identifies another entity that has this entity as an
instance.

represented
in

Asset Represented in identifies the Asset whose diagrams include this
Asset.

represents Asset Represents identities the Asset that is included in this Asset’s
diagrams.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.

verifies Requirement Verifies identifies the Requirement that is supported by this entity.

LML Specification 2.0
April 23, 2025

58

Table A-9. Characteristic Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

fetched by Action Fetched by identifies the Action that this State Characteristic is
received by.

generates Input/Output Generates identifies the Input/Output or Action that this Action or
Characteristic transforms.

generates Action Generates identifies the Input/Output or Action that this Action or
Characteristic transforms.

instantiated
by

Characteristic Instantiated by identifies another entity that is an instance of this
entity.

instantiates Characteristic Instantiates identifies another entity that has this entity as an
instance.

pushes Action Pushes identifies the Action that this State Characteristic generates.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.

variable of Equation Variable of identifies the Equation that this Characteristic is
represented in.

verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-10. Conduit Relations

Name Classes Description

instantiated by Conduit Instantiated by identifies another entity that is an instance of this entity.

instantiates Conduit Instantiates identifies another entity that has this entity as an instance.

Table A-11. Connection Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.
verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-12. Cost Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.

verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-13. Decision Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

LML Specification 2.0
April 23, 2025

59

Table A-14. Input/Output Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

instantiated
by

Input/Output Instantiated by identifies another entity that is an instance of this
entity.

instantiates Input/Output Instantiates identifies another entity that has this entity as an
instance.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.

verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-15. Location Relations

Name Classes Description

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.
verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-16. Requirement Relations

Name Classes Description

copied by Requirement Copied by identifies the Requirement that is a clone of this
Requirement.

copies Requirement Copies identifies the Requirement that this Requirement clones.

derived by Requirement Derived by identifies the Requirement that is developed from this
Requirement.

derives Requirement Derives identifies the Requirement that this Requirement develop from.

refined by Requirement Refined by identifies the Requirement that clarifies this Requirement.
refines Requirement Refines identifies the Requirement that this Requirement clarifies.

satisfied
by

Cost Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Time Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Action Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Artifact Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Asset Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Location Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Input/Output Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Characteristic Satisfied by identifies the entity that fulfills this Requirement.

satisfied
by

Connection Satisfied by identifies the entity that fulfills this Requirement.

verified by Input/Output Verified by identifies the entity that supports this Requirement.

verified by Characteristic Verified by identifies the entity that supports this Requirement.

verified by Asset Verified by identifies the entity that supports this Requirement.

verified by Artifact Verified by identifies the entity that supports this Requirement.

LML Specification 2.0
April 23, 2025

60

Name Classes Description

verified by Time Verified by identifies the entity that supports this Requirement.
verified by Action Verified by identifies the entity that supports this Requirement.

verified by Requirement Verified by identifies the entity that supports this Requirement.

verified by Cost Verified by identifies the entity that supports this Requirement.
verified by Connection Verified by identifies the entity that supports this Requirement.

verified by Location Verified by identifies the entity that supports this Requirement.

verifies Requirement Verifies identifies the Requirement that is supported by this entity.

Table A-17. Risk Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

Table A-18. Statement Relations

Name Classes Description

equation of Equation Equation of identifies the Equation that represents this entity.

Table A-19. Time Relations

Name Classes Description
equation of Equation Equation of identifies the Equation that represents this entity.

satisfies Requirement Satisfies identifies the Requirement that is fulfilled by this entity.

verifies Requirement Verifies identifies the Requirement that is supported by this entity.

LML Specification 2.0
April 23, 2025

61

Appendix B. DoDAF MetaModel 2.0.1 (DM2) Mapping to LML
The Department of Defense has developed a schema called the DoDAF (DoD Architecture Framework)

MetaModel 2.0.1 (DM2). The Conceptual Data Model is shown below. The physical data model contains

over 500 entries. As shown below, this is a specialized model that focuses mainly on the DoD

nomenclature and may be less useful in other domains. For example, since the DoD has developed their

acquisition process around the concept of “Capability,” that becomes a critical item in the top level of

this schema, thus driving additional relationships. In LML we identified that capability could be a type of

Action, Asset, Characteristic or even a Statement. However, LML does not preclude the user or tool

vendor from adding “Capability” as an entity class. Schema extensions are actually encouraged for

different domains. As such extensions are made and standardized; the LML Steering Committee will

consider adding them as extensions to LML.

Figure B-1. DM2 Conceptual Data Model.

For a quick guide from the DM2 schema to LML, please see the table below.

LML Specification 2.0
April 23, 2025

62

Table B-1. DM2 Conceptual Data Model Mapping to LML

LML Specification 2.0
April 23, 2025

63

Appendix C. UAF Diagram Framework
The Unified Architecture Framework (UAF) represents another way to organize systems engineering

products for architecture development. Figure C-1 below shows how LML, SysML and other diagram

types fit into this framework. Also note the need for simulators to complete the matrix. LML provides

the underlying ontology for creating discrete event and Monte Carlo simulations.

C-1. LML provides a more complete way to represent the Unified Architecture Framework.

LML Specification 2.0
April 23, 2025

64

Appendix D. Structuring Artifacts
The purpose of this appendix is to document an approach to structuring Artifacts, such as documents.

This approach requires new metadata for the Artifact class, the addition of one new subclass (i.e.

Heading) and one new relationship (originated by). This approach provides multiple advantages over the

previous model, including:

• Eliminates numbering conflicts that arise when a requirement exists in multiple documents

• Enabling building content from any Entity class rather than being limited to Statement Class

Entities

• Eliminates convoluted traceability resulting when Sections decompose to multiple levels of

depth

The Artifact metadata, Heading class along with its attributes and relationships, and the “originated by”

relationship are defined below. An entity relationship diagram illustrating the use of these items is also

provided.

Table D-1. New Class

Class Parent Description

Heading None A Heading entity provides structure to an Artifact, representing Sections of a
document

Heading
A Heading entity structures an Artifact and contains the content of the Section it represents.

Table D-2. Heading Relations (in addition to those that are standard for all entities)

Name Classes Description
sourced
by

Artifact A Heading is sourced by an Artifact when the Heading functions as a Level 1
Section

contains Any A Heading contains any other class. When viewed as a document, the Heading
displays whatever attributes have been selected for the contained class

Table D-3. New Relationship (originated by)

Class Name Class Description

Artifact originates/
originated by

Requirement Used to establish a direct link between a Requirement
and the Artifact that functions as the originating
authoritative source

The entity relationship diagram below (Figure D-1) shows how an Artifact might be structured. The

Heading for Section 2.0 is directly linked to the Artifact using the source of/sourced by relationship since

it represents a Level 1 section. That section is also decomposed to capture deeper document structure,

including a child section (2.1) and a grandchild section (2.1.1). Use of the Heading object allows a section

to contain multiple objects of any class, as can be seen in this example for Section 2.1 and 2.1.1. This

enables constructing more complex Artifacts rather than being constrained to only the Statement class

and it’s subclasses. This supports common cases such as when a section contains both statement and

requirement class objects, or such as when an artifact, representing an operating procedure built

directly from an Action diagram, has sections that contain Action class objects. In a document view, the

LML Specification 2.0
April 23, 2025

65

Headings would show the structure with its section numbering, name and description attributes. The

paragraph contents displayed underneath the Heading would include at least the description attribute

of each contained object. The name and number of the “contained” object could optionally be

displayed.

Figure D-1. Proposed New Classes for Structured Artifacts

LML Specification 2.0
April 23, 2025

66

Appendix E. Application Programming Interfaces
Application Programming Interfaces (APIs) allow multiple computer programs to talk to each other. They

act like user interfaces, but instead of connecting computer programs to people, APIs connect computer

programs to other computer programs. In this case, Applications refer to any software program with a

distinct function, and Interfaces are like contracts of service between two of these Applications. Also, it

is important to appreciate the distinction between client programs and server programs when talking

about APIs.

The most popular kind of APIs are Representational State Transfer (REST) APIs. These work with a set of

functions (e.g., GET, PUT, DELETE, etc.) that clients can use to access data on the server. The server

responds to client requests in plain data, without graphical rendering. The server also does not preserve

session information from the client (i.e., statelessness). The REST APIs in Innoslate 4.x for entities and

schemas are listed below:

Entity

• Fetch entities from the search query

• Method: GET

• URL: api/v4/o/:organizationSlug/entities

• Parameters:

• query

• project Id

• Optional Parameters:

• limit

• offset

• Response: Array of Entity Objects

• Example: api/v4/o/demo/entities?query="class:Action"&projectId=64&limit=30&offset=0

• Update Entities

• Method: POST, PUT

• URL: api/v4/o/:organizationSlug/entities

• Payload: Array of Entity Objects

• Payload Example:

[{"number":"1","labelIds":[],"sortNumber":"000001.00000.0000.000.000.000.000.15639","classId":3,"cr

eatedIn":0,"modifiedIn":0,"linkedLabelId":0,"rels":[],"attrs":{},"controlStep":null,"controlType":"SERIAL",

"branches":[],"diagrams":{},"isArchived":false,"isLocked":false,"followers":["john.doe"],"projectId":64,"g

lobalId":"I_6168Y8QCZCK6S_AKAJ8HC1TC3ES","isRedacted":false,"id":15639,"name":"Asset","descriptio

LML Specification 2.0
April 23, 2025

67

n":"","created":1541771921633,"modified":1541771973213,"createdBy":"john.doe","modifiedBy":"joh

n.doe","version":2}]

• Response: Array of Entity Objects

• Fetch entities by Ids

• Method: GET

• URL: api/v4/o/:organizationSlug/entities/:ids

• Optional Parameters:

• includeChildren

• includeArchived

• includeRelations

• levels

• Response: Array of Entity Objects

• Update entities by Ids

• Method: POST, PUT

• URL: api/v4/o/:organizationSlug/entities/ids

• Payload: Array of Entity Object

• Payload Example: [234, 233]

• Response: Array of Entity Objects

• Delete entities by Ids

• Method: DELETE

• URL: api/v4/o/:organizationSlug/entities/ids

• Payload: Array of Entity Object

• Payload Example: [234, 233]

• Response: Array of Entity Objects

• Transform entities into another class

• Method: PUT

• URL: api/v4/o/:organizationSlug/entities/transform/:classId/:ids

• Response: Array of new transformed Entity Objects

• Example: api/v4/o/demo/entities/transform/3/9390,9450

LML Specification 2.0
April 23, 2025

68

• Revert entities to previous version

• Method: PUT

• URL: api/v4/o/:organizationSlug/entities/revert/:ids/:versionNumbers

• Response: Array of reverted Entity Objects

• Example: api/v4/o/demo/entities/transform/3/9390,9450

• Restore deleted entities

• Method: PUT

• URL: api/v4/o/:organizationSlug/entities/restore/:ids

• Response: Array of reverted Entity Objects

• Example:

• Auto number entities

• Method: PUT

• URL: api/v4/o/:organizationSlug/entities/autonumber/:id

• Optional Parameters:

• startNumber

• singleLevel

• useControlStep

• Response: Array of auto numbered Entity Objects

• Example:

Schema

• Fetch organization schema

• Method: GET

• URL: api/v4/o/:organizationSlug/schema

• Response: Schema Object

• Update organization schema

• Method: POST, PUT

• URL: api/v4/o/:organizationSlug/schema

• Payload: Schema Object

• Payload Example:

LML Specification 2.0
April 23, 2025

69

• Response: Schema Object

• Delete organization schema properties or labels

• Method: DELETE

• URL: api/v4/o/:organizationSlug/schema/:type/:ids

• Response: Schema Object

• Fetch project schema

• Method: GET

• URL: api/v4/o/:organizationSlug/p/:projectId/schema

• Response: Schema Object

• Update project schema

• Method: POST, PUT

• URL: api/v4/o/:organizationSlug/p/:projectId/schema

• Payload: Schema Object

• Payload Example:

• Response: Schema Object

• Delete project schema properties or labels

• Method: DELETE

• URL: api/v4/o/:organizationSlug/p/:projectId/schema/:type/:ids

• Response: Schema Object

	1. Specification Information
	1.1. Purpose of this Specification
	1.2. LML Steering Committee
	1.3. Documentation Conventions & Terminology
	1.4. Changes from Version 1.4 to Version 2.0

	2. ERA Fundamentals
	2.1. Entity Classes (noun)
	2.2. Entity Class Attribute (adjective)
	2.3. Entity Class Relationships (verb)
	2.4. Attributes on Relationships (adverb)
	2.5. Attribute Data Types
	2.5.1. Big_Text
	2.5.2. Boolean
	2.5.3. Computable
	2.5.4. DateTime
	2.5.5. Duration
	2.5.6. Enumeration
	2.5.7. Equation
	2.5.8. File
	2.5.9. GeoPoint
	2.5.10. HTML
	2.5.11. Multiplicity
	2.5.12. Multiselect
	2.5.13. Number
	2.5.14. Percent
	2.5.15. Quality
	2.5.16. Text
	2.5.17. URI
	2.5.18. User_Team

	2.6. Class Inheritance
	2.7. Extensions
	2.8. Implementation

	3. LML Semantic Ontology
	3.1. LML Classes
	3.2. LML Relationships
	3.3. Traceability
	3.4. Class Specifications
	3.4.0.1. Common Attributes
	3.4.0.1.1. name
	3.4.0.1.2. number
	3.4.0.1.3. description

	3.4.0.2. Common Relationships
	3.4.0.2.1. causes/caused by
	3.4.0.2.2. decomposed by/decomposes
	3.4.0.2.3. enables/enabled by
	3.4.0.2.4. incurs/incurred by
	3.4.0.2.5. located at/locates
	3.4.0.2.6. mitigates/mitigated by
	3.4.0.2.7. occurs/occurred by
	3.4.0.2.8. references/referenced by
	3.4.0.2.9. related to/relates
	3.4.0.2.9.1. context

	3.4.0.2.10. resolves/resolved by
	3.4.0.2.11. results in/result of
	3.4.0.2.12. specified by/specifies
	3.4.0.2.13. traced from/traced to

	3.4.1. Action
	3.4.1.1. Action Attributes
	3.4.1.1.1. duration (Action)
	3.4.1.1.2. type (Action)

	3.4.1.2. Action Relationships
	3.4.1.2.1. consumes/consumed by
	3.4.1.2.1.1. amount

	3.4.1.2.2. generates/generated by
	3.4.1.2.3. performed by/performs
	3.4.1.2.4. receives/received by
	3.4.1.2.4.1. trigger

	3.4.1.2.5. seizes/seized by
	3.4.1.2.5.1. amount

	3.4.1.3. Task (Action)
	3.4.1.3.1. Task Attributes
	3.4.1.3.1.1. date due
	3.4.1.3.1.2. estimated date of completion
	3.4.1.3.1.3. finish
	3.4.1.3.1.4. percent complete
	3.4.1.3.1.5. planned start
	3.4.1.3.1.6. priority
	3.4.1.3.1.7. start
	3.4.1.3.1.8. status
	3.4.1.3.1.9. type (Task)

	3.4.1.3.2. Task Relationships
	3.4.1.3.2.1. depends on/has dependent
	3.4.1.3.2.2. scheduled by/schedules
	3.4.1.3.2.3. tracked by/tracks

	3.4.1.4. Test Case (Action)
	3.4.1.4.1. Test Case Attributes
	3.4.1.4.1.1. Actual Result
	3.4.1.4.1.2. Expected Result
	3.4.1.4.1.3. Event Conditions
	3.4.1.4.1.4. Event Constraints
	3.4.1.4.1.5. Status
	3.4.1.4.1.6. Setup
	3.4.1.4.1.7. Type (Test Case)

	3.4.1.4.2. Test Case Relationships
	3.4.1.4.2.1. evaluates/evaluated by
	3.4.1.4.2.2. references/referenced by
	3.4.1.4.2.3. traced from/traced to

	3.4.2. Artifact
	3.4.2.1. Artifact Attributes
	3.4.2.1.1. date published
	3.4.2.1.2. file
	3.4.2.1.3. type

	3.4.2.2. Artifact Relationships
	3.4.2.2.1. defines protocol for/defined protocol by
	3.4.2.2.2. source of/sourced by

	3.4.3. Asset
	3.4.3.1. Asset Attributes
	3.4.3.1.1. type

	3.4.3.2. Asset Relationships
	3.4.3.2.1. connected by/connects to
	3.4.3.2.2. orbited by/orbits

	3.4.3.3. Resource (Asset)
	3.4.3.3.1. Resource Attributes
	3.4.3.3.1.1. initial amount
	3.4.3.3.1.2. maximum amount
	3.4.3.3.1.3. minimum amount
	3.4.3.3.1.4. units
	3.4.3.3.1.5. type

	3.4.3.3.2. Resource Relationships
	3.4.3.3.2.1. consumed by/consumes
	3.4.3.3.2.1.1. amount attribute
	3.4.3.3.2.2. produced by/produces
	3.4.3.3.2.2.1. amount
	3.4.3.3.2.3. seizes/seized by
	3.4.3.3.2.3.1. amount

	3.4.4. Characteristic
	3.4.4.1. Characteristic Attributes
	3.4.4.1.1. type
	3.4.4.1.2. units
	3.4.4.1.3. value
	3.4.4.1.4. formatted equation (optional)
	3.4.4.1.5. computed value (optional)

	3.4.4.2. Characteristic Relationships
	3.4.4.3. Measure (Characteristic)
	3.4.4.3.1. Measure Attributes
	3.4.4.3.1.1. improvement direction
	3.4.4.3.1.2. objective value
	3.4.4.3.1.3. projected value
	3.4.4.3.1.4. threshold value
	3.4.4.3.1.5. tolerance
	3.4.4.3.1.6. type

	3.4.4.3.2. Measure Relationships

	3.4.5. Connection (Abstract Class)
	3.4.5.1. Connection Attributes
	3.4.5.2. Connection Relationships
	3.4.5.2.2. connects to/connected by
	3.4.5.2.2.1. origin
	3.4.5.2.2.2. multiplicity

	3.4.5.2.5. joined by/joins
	3.4.5.2.6.1. bidirectional

	3.4.5.3. Conduit (Connection)
	3.4.5.3.1. Conduit Attributes
	3.4.5.3.1.1. capacity
	3.4.5.3.1.2. latency
	3.4.5.3.1.3. units (Conduit)
	3.4.5.3.1.4. type (Conduit)

	3.4.5.3.2. Conduit Relationships
	3.4.5.3.2.1. defined protocol by/defines protocol for
	3.4.5.3.2.2. transfers/transferred by

	3.4.5.4. Dependency (Connection)
	3.4.5.4.1. Dependency Attributes
	3.4.5.4.2. Dependency Relationships
	3.4.5.4.2.1. has dependent/depends on
	3.4.5.4.2.1.1. origin
	3.4.5.4.2.1.2. dependency

	3.4.5.5. Logical (Connection)
	3.4.5.5.1. Logical Attributes
	3.4.5.5.2. Logical Relationships
	3.4.5.5.2.1. specified by/specifies (Logical)

	3.4.6. Cost
	3.4.6.1. Cost Attributes
	3.4.6.1.1. amount
	3.4.6.1.2. category
	3.4.6.1.3. contract type
	3.4.6.1.4. rate
	3.4.6.1.5. units (Cost)
	3.4.6.1.6. type (Cost)

	3.4.6.2. Cost Relationships

	3.4.7. Decision
	3.4.7.1. Decision Attributes
	3.4.7.1.1. assumptions
	3.4.7.1.2. justification
	3.4.7.1.3. status
	3.4.7.1.4. type (Decision)

	3.4.7.2. Decision Relationships
	3.4.7.2.1. alternative/alternative of
	3.4.7.2.1.1. choice

	3.4.7.2.2. date resolved by/date resolves
	3.4.7.2.3. decision due/decided by
	3.4.7.2.4. made by/made
	3.4.7.2.5. responded by/responds to
	3.4.7.2.5.1. responsibility

	3.4.8. Input/Output
	3.4.8.1. Input/Output Attributes
	3.4.8.1.1. size
	3.4.8.1.2. units (Input/Output)
	3.4.8.1.3. type (Input/Output)

	3.4.8.2. Input/Output Relationships
	3.4.8.2.1 generated by/generates
	3.4.8.2.2. received by/receives
	3.4.8.2.2.1. trigger

	3.4.8.2.3. transferred by/transfers

	3.4.9. Location (Abstract Class)
	3.4.9.1. Location Attributes
	3.4.9.2. Location Relationships
	3.4.9.3. Orbital (Location)
	3.4.9.3.1. Orbital Attributes
	3.4.9.3.1.1. inclination
	3.4.9.3.1.2. semimajor axis
	3.4.9.3.1.3. longitude of ascending node
	3.4.9.3.1.4. reference plane
	3.4.9.3.1.5. argument of periapsis
	3.4.9.3.1.6. origin of longitude
	3.4.9.3.1.7. mean anomaly
	3.4.9.3.1.8. apoapsis
	3.4.9.3.1.9. periapsis
	3.4.9.3.1.10. eccentricity

	3.4.9.3.2. Orbital Relationships

	3.4.9.4. Physical (Location)
	3.4.9.4.1. Physical Attributes
	3.4.9.4.1.1. address (Physical)
	3.4.9.4.1.2. altitude/depth
	3.4.9.4.1.3. coordinates
	3.4.9.4.1.4. units (Physical)
	3.4.9.4.1.5. type (Physical)

	3.4.9.4.2. Physical Relationships

	3.4.9.5. Virtual (Location)
	3.4.9.5.1. Virtual Attributes
	3.4.9.5.1.1. address (Virtual)

	3.4.9.5.2. Virtual Relationships

	3.4.10. Risk
	3.4.10.1. Risk Attributes
	3.4.10.1.1. consequence
	3.4.10.1.2. consequence description
	3.4.10.1.3. mitigation status
	3.4.10.1.4. probability
	3.4.10.1.5. status
	3.4.10.1.6. trend
	3.4.10.1.7. type (Risk)

	3.4.10.2. Risk Relationships

	3.4.11. Statement
	3.4.11.1. Statement Attributes
	3.4.11.1.1. type (Statement)

	3.4.11.2. Statement Relationships
	3.4.11.2.1. alternative of/alternative
	3.4.11.2.1.1. choice

	3.4.11.2.2. sourced by/source of

	3.4.11.3. Requirement (Statement)
	3.4.11.3.1. Requirement Attributes
	3.4.11.3.1.1. rationale
	3.4.11.3.1.2. type (Statement)

	3.4.11.3.2. Requirement Relationships

	3.4.11.4. Verification Requirement (Statement)
	3.4.11.4.1. Verification Requirement Attributes
	3.4.11.4.1.1. acceptance criteria
	3.4.11.4.1.2. evidence
	3.4.11.4.1.3. rationale
	3.4.11.4.1.4. verification method

	3.4.11.4.2. Verification Requirement Relationships

	3.4.12. Time
	3.4.12.1. Time Attributes
	3.4.12.1.1. duration
	3.4.12.1.2. end
	3.4.12.1.3. start (Time)
	3.4.12.1.4. type (Time)

	3.4.12.2. Time Relationships
	3.4.12.2.1. date resolves/date resolved by
	3.4.12.2.2. decided by/decision due

	4. Visualizations
	4.1. Action Diagram (Mandatory for Action entities with children)
	4.2. Asset Diagram (Mandatory for Asset entities with children)
	4.3. Spider Diagram (Mandatory for Traceability)
	4.4. Interface Control Diagram (Mandatory)
	4.5 Example Views for Other LML Entities
	4.5.1 Class Diagram
	4.5.2. ERAA Diagram
	4.5.3 Timelines
	4.5.4. Hierarchy Diagram
	4.5.5. Risk Matrix
	4.5.6. State Machine Diagram

	Appendix A. SysML v1.X Mapping to LML
	Equation Class
	Port Class

	Appendix B. DoDAF MetaModel 2.0.1 (DM2) Mapping to LML
	Appendix C. UAF Diagram Framework
	Appendix D. Structuring Artifacts
	Heading

	Appendix E. Application Programming Interfaces

